310 research outputs found

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements

    Monochromatic loose paths in multicolored kk-uniform cliques

    Full text link
    For integers k2k\ge 2 and 0\ell\ge 0, a kk-uniform hypergraph is called a loose path of length \ell, and denoted by P(k)P_\ell^{(k)}, if it consists of \ell edges e1,,ee_1,\dots,e_\ell such that eiej=1|e_i\cap e_j|=1 if ij=1|i-j|=1 and eiej=e_i\cap e_j=\emptyset if ij2|i-j|\ge2. In other words, each pair of consecutive edges intersects on a single vertex, while all other pairs are disjoint. Let R(P(k);r)R(P_\ell^{(k)};r) be the minimum integer nn such that every rr-edge-coloring of the complete kk-uniform hypergraph Kn(k)K_n^{(k)} yields a monochromatic copy of P(k)P_\ell^{(k)}. In this paper we are mostly interested in constructive upper bounds on R(P(k);r)R(P_\ell^{(k)};r), meaning that on the cost of possibly enlarging the order of the complete hypergraph, we would like to efficiently find a monochromatic copy of P(k)P_\ell^{(k)} in every coloring. In particular, we show that there is a constant c>0c>0 such that for all k2k\ge 2, 3\ell\ge3, 2rk12\le r\le k-1, and nk(+1)r(1+ln(r))n\ge k(\ell+1)r(1+\ln(r)), there is an algorithm such that for every rr-edge-coloring of the edges of Kn(k)K_n^{(k)}, it finds a monochromatic copy of P(k)P_\ell^{(k)} in time at most cnkcn^k. We also prove a non-constructive upper bound R(P(k);r)(k1)rR(P_\ell^{(k)};r)\le(k-1)\ell r

    On globally sparse Ramsey graphs

    Full text link
    We say that a graph GG has the Ramsey property w.r.t.\ some graph FF and some integer r2r\geq 2, or GG is (F,r)(F,r)-Ramsey for short, if any rr-coloring of the edges of GG contains a monochromatic copy of FF. R{\"o}dl and Ruci{\'n}ski asked how globally sparse (F,r)(F,r)-Ramsey graphs GG can possibly be, where the density of GG is measured by the subgraph HGH\subseteq G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs FF. In this work we determine the Ramsey density up to some small error terms for several cases when FF is a complete bipartite graph, a cycle or a path, and r2r\geq 2 colors are available
    corecore