491 research outputs found

    A parametric integer programming algorithm for bilevel mixed integer programs

    Get PDF
    We consider discrete bilevel optimization problems where the follower solves an integer program with a fixed number of variables. Using recent results in parametric integer programming, we present polynomial time algorithms for pure and mixed integer bilevel problems. For the mixed integer case where the leader's variables are continuous, our algorithm also detects whether the infimum cost fails to be attained, a difficulty that has been identified but not directly addressed in the literature. In this case it yields a ``better than fully polynomial time'' approximation scheme with running time polynomial in the logarithm of the relative precision. For the pure integer case where the leader's variables are integer, and hence optimal solutions are guaranteed to exist, we present two algorithms which run in polynomial time when the total number of variables is fixed.Comment: 11 page

    On the relationship between bilevel decomposition algorithms and direct interior-point methods

    Get PDF
    Engineers have been using bilevel decomposition algorithms to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upperlevel problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used bilevel decomposition algorithms may fail to converge even when the starting point is very close to the minimizer. In this paper, we establish a relationship between a particular bilevel decomposition algorithm, which only performs one iteration of an interior-point method when solving the subproblems, and a direct interior-point method, which solves the problem in its original (integrated) form. Using this relationship, we formally prove that the bilevel decomposition algorithm converges locally at a superlinear rate. The relevance of our analysis is that it bridges the gap between the incipient local convergence theory of bilevel decomposition algorithms and the mature theory of direct interior-point methods

    A novel approach for bilevel programs based on Wolfe duality

    Full text link
    This paper considers a bilevel program, which has many applications in practice. To develop effective numerical algorithms, it is generally necessary to transform the bilevel program into a single-level optimization problem. The most popular approach is to replace the lower-level program by its KKT conditions and then the bilevel program can be reformulated as a mathematical program with equilibrium constraints (MPEC for short). However, since the MPEC does not satisfy the Mangasarian-Fromovitz constraint qualification at any feasible point, the well-developed nonlinear programming theory cannot be applied to MPECs directly. In this paper, we apply the Wolfe duality to show that, under very mild conditions, the bilevel program is equivalent to a new single-level reformulation (WDP for short) in the globally and locally optimal sense. We give an example to show that, unlike the MPEC reformulation, WDP may satisfy the Mangasarian-Fromovitz constraint qualification at its feasible points. We give some properties of the WDP reformulation and the relations between the WDP and MPEC reformulations. We further propose a relaxation method for solving WDP and investigate its limiting behavior. Comprehensive numerical experiments indicate that, although solving WDP directly does not perform very well in our tests, the relaxation method based on the WDP reformulation is quite efficient
    • …
    corecore