38,108 research outputs found

    Chaos in the thermodynamic Bethe ansatz

    Get PDF
    We investigate the discretized version of the thermodynamic Bethe ansatz equation for a variety of 1+1 dimensional quantum field theories. By computing Lyapunov exponents we establish that many systems of this type exhibit chaotic behaviour, in the sense that their orbits through fixed points are extremely sensitive with regard to the initial conditions.Comment: 10 pages, Late

    Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models

    Full text link
    A computation scheme for solving elliptic boundary value problems with axially symmetric confining potentials using different sets of one-parameter basis functions is presented. The efficiency of the proposed symbolic-numerical algorithms implemented in Maple is shown by examples of spheroidal quantum dot models, for which energy spectra and eigenfunctions versus the spheroid aspect ratio were calculated within the conventional effective mass approximation. Critical values of the aspect ratio, at which the discrete spectrum of models with finite-wall potentials is transformed into a continuous one in strong dimensional quantization regime, were revealed using the exact and adiabatic classifications.Comment: 6 figures, Submitted to Proc. of The 12th International Workshop on Computer Algebra in Scientific Computing (CASC 2010) Tsakhkadzor, Armenia, September 5 - 12, 201

    Stochastic description for open quantum systems

    Full text link
    A linear open quantum system consisting of a harmonic oscillator linearly coupled to an infinite set of independent harmonic oscillators is considered; these oscillators have a general spectral density function and are initially in a Gaussian state. Using the influence functional formalism a formal Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. It is shown that the reduced Wigner function for the system is exactly the formal distribution function resulting from averaging both over the initial conditions and the stochastic source of the formal Langevin equation. The master equation for the reduced density matrix is then obtained in the same way a Fokker-Planck equation can always be derived from a Langevin equation characterizing a stochastic process. We also show that a subclass of quantum correlation functions for the system can be deduced within the stochastic description provided by the Langevin equation. It is emphasized that when the system is not Markovian more information can be extracted from the Langevin equation than from the master equation.Comment: 16 pages, RevTeX, 1 figure (uses epsf.sty). Shortened version. Partially rewritten to emphasize those aspects which are new. Some references adde

    A convergent method for linear half-space kinetic equations

    Get PDF
    We give a unified proof for the well-posedness of a class of linear half-space equations with general incoming data and construct a Galerkin method to numerically resolve this type of equations in a systematic way. Our main strategy in both analysis and numerics includes three steps: adding damping terms to the original half-space equation, using an inf-sup argument and even-odd decomposition to establish the well-posedness of the damped equation, and then recovering solutions to the original half-space equation. The proposed numerical methods for the damped equation is shown to be quasi-optimal and the numerical error of approximations to the original equation is controlled by that of the damped equation. This efficient solution to the half-space problem is useful for kinetic-fluid coupling simulations
    • …
    corecore