13,942 research outputs found

    Gravity and compactified branes in matrix models

    Full text link
    A mechanism for emergent gravity on brane solutions in Yang-Mills matrix models is exhibited. Newtonian gravity and a partial relation between the Einstein tensor and the energy-momentum tensor can arise from the basic matrix model action, without invoking an Einstein-Hilbert-type term. The key requirements are compactified extra dimensions with extrinsic curvature M^4 x K \subset R^D and split noncommutativity, with a Poisson tensor \theta^{ab} linking the compact with the noncompact directions. The moduli of the compactification provide the dominant degrees of freedom for gravity, which are transmitted to the 4 noncompact directions via the Poisson tensor. The effective Newton constant is determined by the scale of noncommutativity and the compactification. This gravity theory is well suited for quantization, and argued to be perturbatively finite for the IKKT model. Since no compactification of the target space is needed, it might provide a way to avoid the landscape problem in string theory.Comment: 35 pages. V2: substantially revised and improved, conclusion weakened. V3: some clarifications, published version. V4: minor correctio

    Galois theory of fuchsian q-difference equations

    Get PDF
    We propose an analytical approach to the Galois theory of singular regular linear q-difference systems. We use Tannaka duality along with Birkhoff's classification scheme with the connection matrix to define and describe their Galois groups. Then we describe \emph{fundamental subgroups} that give rise to a Riemann-Hilbert correspondence and to a density theorem of Schlesinger's type.Comment: Prepublication du Laboratoire Emile Picard n.246. See also http://picard.ups-tlse.f

    Comparison and Rigidity Theorems in Semi-Riemannian Geometry

    Full text link
    The comparison theory for the Riccati equation satisfied by the shape operator of parallel hypersurfaces is generalized to semi-Riemannian manifolds of arbitrary index, using one-sided bounds on the Riemann tensor which in the Riemannian case correspond to one-sided bounds on the sectional curvatures. Starting from 2-dimensional rigidity results and using an inductive technique, a new class of gap-type rigidity theorems is proved for semi-Riemannian manifolds of arbitrary index, generalizing those first given by Gromov and Greene-Wu. As applications we prove rigidity results for semi-Riemannian manifolds with simply connected ends of constant curvature.Comment: 46 pages, amsart, to appear in Comm. Anal. Geo

    Distributed Hierarchical SVD in the Hierarchical Tucker Format

    Full text link
    We consider tensors in the Hierarchical Tucker format and suppose the tensor data to be distributed among several compute nodes. We assume the compute nodes to be in a one-to-one correspondence with the nodes of the Hierarchical Tucker format such that connected nodes can communicate with each other. An appropriate tree structure in the Hierarchical Tucker format then allows for the parallelization of basic arithmetic operations between tensors with a parallel runtime which grows like log⁥(d)\log(d), where dd is the tensor dimension. We introduce parallel algorithms for several tensor operations, some of which can be applied to solve linear equations AX=B\mathcal{A}X=B directly in the Hierarchical Tucker format using iterative methods like conjugate gradients or multigrid. We present weak scaling studies, which provide evidence that the runtime of our algorithms indeed grows like log⁥(d)\log(d). Furthermore, we present numerical experiments in which we apply our algorithms to solve a parameter-dependent diffusion equation in the Hierarchical Tucker format by means of a multigrid algorithm
    • 

    corecore