5,142 research outputs found

    Recent progress in elliptic equations and systems of arbitrary order with rough coefficients in Lipschitz domains

    Get PDF
    This is a survey of results mostly relating elliptic equations and systems of arbitrary even order with rough coefficients in Lipschitz graph domains. Asymptotic properties of solutions at a point of a Lipschitz boundary are also discussed

    Long time dynamics for damped Klein-Gordon equations

    Full text link
    For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in H1×L2H^1\times L^2. In particular, any global solution is bounded. The result applies to standard energy subcritical focusing nonlinearities ∣u∣p−1u|u|^{p-1} u, 1\textless{}p\textless{}(d+2)/(d-2) as well as any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems)

    Persistence of invariant manifolds for nonlinear PDEs

    Full text link
    We prove that under certain stability and smoothing properties of the semi-groups generated by the partial differential equations that we consider, manifolds left invariant by these flows persist under C1C^1 perturbation. In particular, we extend well known finite-dimensional results to the setting of an infinite-dimensional Hilbert manifold with a semi-group that leaves a submanifold invariant. We then study the persistence of global unstable manifolds of hyperbolic fixed-points, and as an application consider the two-dimensional Navier-Stokes equation under a fully discrete approximation. Finally, we apply our theory to the persistence of inertial manifolds for those PDEs which possess them. teComment: LaTeX2E, 32 pages, to appear in Studies in Applied Mathematic

    Feedback Stabilization Methods for the Numerical Solution of Systems of Ordinary Differential Equations

    Get PDF
    In this work we study the problem of step size selection for numerical schemes, which guarantees that the numerical solution presents the same qualitative behavior as the original system of ordinary differential equations, by means of tools from nonlinear control theory. Lyapunov-based and Small-Gain feedback stabilization methods are exploited and numerous illustrating applications are presented for systems with a globally asymptotically stable equilibrium point. The obtained results can be used for the control of the global discretization error as well.Comment: 33 pages, 9 figures. Submitted for possible publication to BIT Numerical Mathematic

    Convex integration for Lipschitz mappings and counterexamples to regularity

    Full text link
    We study Lispchitz solutions of partial differential relations ∇u∈K\nabla u\in K, where uu is a vector-valued function in an open subset of RnR^n. In some cases the set of solutions turns out to be surprisingly large. The general theory is then used to construct counter-examples to regularity of solutions of Euler-Lagrange systems satisfying classical ellipticity conditions.Comment: 28 pages published versio

    Non-Lipschitz points and the SBV regularity of the minimum time function

    Full text link
    This paper is devoted to the study of the Hausdorff dimension of the singular set of the minimum time function TT under controllability conditions which do not imply the Lipschitz continuity of TT. We consider first the case of normal linear control systems with constant coefficients in RN\mathbb{R}^N. We characterize points around which TT is not Lipschitz as those which can be reached from the origin by an optimal trajectory (of the reversed dynamics) with vanishing minimized Hamiltonian. Linearity permits an explicit representation of such set, that we call S\mathcal{S}. Furthermore, we show that S\mathcal{S} is HN−1\mathcal{H}^{N-1}-rectifiable with positive HN−1\mathcal{H}^{N-1}-measure. Second, we consider a class of control-affine \textit{planar} nonlinear systems satisfying a second order controllability condition: we characterize the set S\mathcal{S} in a neighborhood of the origin in a similar way and prove the H1\mathcal{H}^1-rectifiability of S\mathcal{S} and that H1(S)>0\mathcal{H}^1(\mathcal{S})>0. In both cases, TT is known to have epigraph with positive reach, hence to be a locally BVBV function (see \cite{CMW,GK}). Since the Cantor part of DTDT must be concentrated in S\mathcal{S}, our analysis yields that TT is SBVSBV, i.e., the Cantor part of DTDT vanishes. Our results imply also that TT is locally of class C1,1\mathcal{C}^{1,1} outside a HN−1\mathcal{H}^{N-1}-rectifiable set. With small changes, our results are valid also in the case of multiple control input.Comment: 23 page

    Waves of maximal height for a class of nonlocal equations with homogeneous symbols

    Get PDF
    We discuss the existence and regularity of periodic traveling-wave solutions of a class of nonlocal equations with homogeneous symbol of order −r-r, where r>1r>1. Based on the properties of the nonlocal convolution operator, we apply analytic bifurcation theory and show that a highest, peaked, periodic traveling-wave solution is reached as the limiting case at the end of the main bifurcation curve. The regularity of the highest wave is proved to be exactly Lipschitz. As an application of our analysis, we reformulate the steady reduced Ostrovsky equation in a nonlocal form in terms of a Fourier multiplier operator with symbol m(k)=k−2m(k)=k^{-2}. Thereby we recover its unique highest 2π2\pi-periodic, peaked traveling-wave solution, having the property of being exactly Lipschitz at the crest.Comment: 25 page

    Nonlinear hyperbolic systems: Non-degenerate flux, inner speed variation, and graph solutions

    Full text link
    We study the Cauchy problem for general, nonlinear, strictly hyperbolic systems of partial differential equations in one space variable. First, we re-visit the construction of the solution to the Riemann problem and introduce the notion of a nondegenerate (ND) system. This is the optimal condition guaranteeing, as we show it, that the Riemann problem can be solved with finitely many waves, only; we establish that the ND condition is generic in the sense of Baire (for the Whitney topology), so that any system can be approached by a ND system. Second, we introduce the concept of inner speed variation and we derive new interaction estimates on wave speeds. Third, we design a wave front tracking scheme and establish its strong convergence to the entropy solution of the Cauchy problem; this provides a new existence proof as well as an approximation algorithm. As an application, we investigate the time-regularity of the graph solutions (X,U)(X,U) introduced by the second author, and propose a geometric version of our scheme; in turn, the spatial component XX of a graph solution can be chosen to be continuous in both time and space, while its component UU is continuous in space and has bounded variation in time.Comment: 74 page
    • …
    corecore