65 research outputs found

    A Content-based Centrality Metric for Collaborative Caching in Information-Centric Fogs

    Get PDF
    Information-Centric Fog Computing enables a multitude of nodes near the end-users to provide storage, communication, and computing, rather than in the cloud. In a fog network, nodes connect with each other directly to get content locally whenever possible. As the topology of the network directly influences the nodes' connectivity, there has been some work to compute the graph centrality of each node within that network topology. The centrality is then used to distinguish nodes in the fog network, or to prioritize some nodes over others to participate in the caching fog. We argue that, for an Information-Centric Fog Computing approach, graph centrality is not an appropriate metric. Indeed, a node with low connectivity that caches a lot of content may provide a very valuable role in the network. To capture this, we introduce acontent-based centrality (CBC) metric which takes into account how well a node is connected to the content the network is delivering, rather than to the other nodes in the network. To illustrate the validity of considering content-based centrality, we use this new metric for a collaborative caching algorithm. We compare the performance of the proposed collaborative caching with typical centrality based, non-centrality based, and non-collaborative caching mechanisms. Our simulation implements CBC on three instances of large scale realistic network topology comprising 2,896 nodes with three content replication levels. Results shows that CBC outperforms benchmark caching schemes and yields a roughly 3x improvement for the average cache hit rate

    Cost-aware caching: optimizing cache provisioning and object placement in ICN

    Full text link
    Caching is frequently used by Internet Service Providers as a viable technique to reduce the latency perceived by end users, while jointly offloading network traffic. While the cache hit-ratio is generally considered in the literature as the dominant performance metric for such type of systems, in this paper we argue that a critical missing piece has so far been neglected. Adopting a radically different perspective, in this paper we explicitly account for the cost of content retrieval, i.e. the cost associated to the external bandwidth needed by an ISP to retrieve the contents requested by its customers. Interestingly, we discover that classical cache provisioning techniques that maximize cache efficiency (i.e., the hit-ratio), lead to suboptimal solutions with higher overall cost. To show this mismatch, we propose two optimization models that either minimize the overall costs or maximize the hit-ratio, jointly providing cache sizing, object placement and path selection. We formulate a polynomial-time greedy algorithm to solve the two problems and analytically prove its optimality. We provide numerical results and show that significant cost savings are attainable via a cost-aware design

    Mediator-assisted multi-source routing in information-centric networks

    Get PDF
    Among the new communication paradigms recently proposed, information-centric networking (ICN) is able to natively support content awareness at the network layer shifting the focus from hosts (as in traditional IP networks) to information objects. In this paper, we exploit the intrinsic content-awareness ICN features to design a novel multi-source routing mechanism. It involves a new network entity, the ICN mediator, responsible for locating and delivering the requested information objects that are chunked and stored at different locations. Our approach imposes very limited signalling overhead, especially for large chunk size (MBytes). Simulations show significant latency reduction compared to traditional routing approaches

    Cache "less for more" in information-centric networks (extended version)

    Get PDF
    Ubiquitous in-network caching is one of the key aspects of information-centric networking (ICN) which has received widespread research interest in recent years. In one of the key relevant proposals known as Content-Centric Networking (CCN), the premise is that leveraging in-network caching to store content in every node along the delivery path can enhance content delivery. We question such an indiscriminate universal caching strategy and investigate whether caching less can actually achieve more. More specifically, we study the problem of en route caching and investigate if caching in only a subset of nodes along the delivery path can achieve better performance in terms of cache and server hit rates. We first study the behavior of CCN's ubiquitous caching and observe that even naĂŻve random caching at a single intermediate node along the delivery path can achieve similar and, under certain conditions, even better caching gain. Motivated by this, we propose a centrality-based caching algorithm by exploiting the concept of (ego network) betweenness centrality to improve the caching gain and eliminate the uncertainty in the performance of the simplistic random caching strategy. Our results suggest that our solution can consistently achieve better gain across both synthetic and real network topologies that have different structural properties. We further find that the effectiveness of our solution is correlated to the precise structure of the network topology whereby the scheme is effective in topologies that exhibit power law betweenness distribution (as in Internet AS and WWW networks)

    Cache replacement positions in information-centric network

    Get PDF
    Information dissemination as the sole functionality driving the current Internet trend has been of keen interest for its manageability. Information Centric Network (ICN) proposed as a new paradigm shift to mitigate the predicted traffic of the current Internet.However, caching as an advantageous building block of ICN is faced with the challenges of content placement, content replacement and eviction.The current practice of ICN caching has given birth to the problems of content redundancy, path redundancy and excessive wastage of bandwidth.This study analyzes the intelligence in cache content management to palliate the gross expenses incurred in the ICN practice.The use of the current factors in previous studies in recency and frequency in content usage play delicate roles in our study. Replacement strategies are agreed to influence the entire cache-hit, stretch and Network diversity

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table
    • …
    corecore