174 research outputs found

    Interactions with combined chemical cues inform harvester ant foragers' decisions to leave the nest in search of food.

    Get PDF
    Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food

    Simulating the evolution of recruitment behavior in foraging Ants

    Get PDF
    Spatial heterogeneity in the distribution of food is an important determinant of species\u27 optimal foraging strategies, and of the dynamics of populations and communities. In order to explore the interaction of food heterogeneity and colony size in their effects on the behavior of foraging ant colonies, we built agent-based models of the foraging and recruitment behavior of harvester ants of the genus Pogonomyrmex. We optimized the behavior of these models using genetic algorithms over a variety of food distributions and colony sizes, and validated their behavior by comparison with data collected on harvester ants foraging for seeds in the field. We compared two models: one in which ants lay a pheromone trail each time they return to the nest with food; and another in which ants lay pheromone trails selectively, depending on the density of other food available in the area where food was found. We found that the density-dependent trail-laying model fit the field data better. We found that in this density-dependent recruitment model, colonies of all sizes evolved intense recruitment behavior, even when optimized for environments in which the majority of foods are distributed homogeneously. We discuss the implications of these models to the understanding of optimal foraging strategy and community dynamics among ants, and potential for application to ACO and other distributed problem-solving systems

    Ant Paintings Based on the Seed Foraging Behavior of P. barbatus

    Get PDF
    Abstract We describe our conversion of a simulation of the seed foraging behavior of the ant species P. barbatus to a generative art technique for creating ant paintings. We also show how the key parameters involved influence the results

    An Agent-Based Model of Ant Colony Energy and Population Dynamics: Effects of Temperature and Food Fluctuation

    Get PDF
    The ant colony, known as a self-organized system, can adapt to the environment by a series of negative and positive feedbacks. There is still a lack of mechanistic understanding of how the factors, such as temperature and food, coordinate the labor of ants. According to the Metabolic Theory of Ecology (MTE), the metabolic rate could control ecological process at all levels. To analyze self-organized process of ant colony, we constructed an agent-based model to simulate the energy and population dynamics of ant colony. After parameterizing the model, we ran 20 parallel simulations for each experiment and parameter sweeps to find patterns and dependencies in the food and energy flow of the colony. Ultimately this model predicted that ant colonies can respond to changes of temperature and food availability and perform differently. We hope this study can improve our understanding on the self-organized process of ant colony

    Uncoupling the effects of seed predation and seed dispersal by granivorous ants on plant population dynamics

    Get PDF
    Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength

    Short-term activity cycles impede information transmission in ant colonies.

    Get PDF
    Rhythmical activity patterns are ubiquitous in nature. We study an oscillatory biological system: collective activity cycles in ant colonies. Ant colonies have become model systems for research on biological networks because the interactions between the component parts are visible to the naked eye, and because the time-ordered contact network formed by these interactions serves as the substrate for the distribution of information and other resources throughout the colony. To understand how the collective activity cycles influence the contact network transport properties, we used an automated tracking system to record the movement of all the individuals within nine different ant colonies. From these trajectories we extracted over two million ant-to-ant interactions. Time-series analysis of the temporal fluctuations of the overall colony interaction and movement rates revealed that both the period and amplitude of the activity cycles exhibit a diurnal cycle, in which daytime cycles are faster and of greater amplitude than night cycles. Using epidemiology-derived models of transmission over networks, we compared the transmission properties of the observed periodic contact networks with those of synthetic aperiodic networks. These simulations revealed that contrary to some predictions, regularly-oscillating contact networks should impede information transmission. Further, we provide a mechanistic explanation for this effect, and present evidence in support of it

    Beyond contact-based transmission networks:the role of spatial coincidence

    Get PDF
    Animal societies rely on interactions between group members to effectively communicate and coordinate their actions. To date, the transmission properties of interaction networks formed by direct physical contacts have been extensively studied for many animal societies and in all cases found to inhibit spreading. Such direct interactions do not, however, represent the only viable pathways. When spreading agents can persist in the environment, indirect transmission via 'same-place, different-time' spatial coincidences becomes possible. Previous studies have neglected these indirect pathways and their role in transmission. Here, we use rock ant colonies, a model social species whose flat nest geometry, coupled with individually tagged workers, allowed us to build temporally and spatially explicit interaction networks in which edges represent either direct physical contacts or indirect spatial coincidences. We show how the addition of indirect pathways allows the network to enhance or inhibit the spreading of different types of agent. This dual-functionality arises from an interplay between the interaction-strength distribution generated by the ants' movement and environmental decay characteristics of the spreading agent. These findings offer a general mechanism for understanding how interaction patterns might be tuned in animal societies to control the simultaneous transmission of harmful and beneficial agents

    An Efficient Multiple-Place Foraging Algorithm for Scalable Robot Swarms

    Get PDF
    Searching and collecting multiple resources from large unmapped environments is an important challenge. It is particularly difficult given limited time, a large search area and incomplete data about the environment. This search task is an abstraction of many real-world applications such as search and rescue, hazardous material clean-up, and space exploration. The collective foraging behavior of robot swarms is an effective approach for this task. In our work, individual robots have limited sensing and communication range (like ants), but they are organized and work together to complete foraging tasks collectively. An efficient foraging algorithm coordinates robots to search and collect as many resources as possible in the least amount of time. In the foraging algorithms we study, robots act independently with little or no central control. As the swarm size and arena size increase (e.g., thousands of robots searching over the surface of Mars or ocean), the foraging performance per robot decreases. Generally, larger robot swarms produce more inter-robot collisions, and in swarm robot foraging, larger search arenas result in larger travel distances causing the phenomenon of diminishing returns. The foraging performance per robot (measured as a number of collected resources per unit time) is sublinear with the arena size and the swarm size. Our goal is to design a scale-invariant foraging robot swarm. In other words, the foraging performance per robot should be nearly constant as the arena size and the swarm size increase. We address these problems with the Multiple-Place Foraging Algorithm (MPFA), which uses multiple collection zones distributed throughout the search area. Robots start from randomly assigned home collection zones but always return to the closest collection zones with found resources. We simulate the foraging behavior of robot swarms in the robot simulator ARGoS and employ a Genetic Algorithm (GA) to discover different optimized foraging strategies as swarm sizes and the number of resources is scaled up. In our experiments, the MPFA always produces higher foraging rates, fewer collisions, and lower travel and search time than the Central-Place Foraging Algorithm (CPFA). To make the MPFA more adaptable, we introduce dynamic depots that move to the centroid of recently collected resources, minimizing transport times when resources are clustered in heterogeneous distributions. Finally, we extend the MPFA with a bio-inspired hierarchical branching transportation network. We demonstrate a scale-invariant swarm foraging algorithm that ensures that each robot finds and delivers resources to a central collection zone at the same rate, regardless of the size of the swarm or the search area. Dispersed mobile depots aggregate locally foraged resources and transport them to a central place via a hierarchical branching transportation network. This approach is inspired by ubiquitous fractal branching networks such as animal cardiovascular networks that deliver resources to cells and determine the scale and pace of life. The transportation of resources through the cardiovascular system from the heart to dispersed cells is the inverse problem of transportation of dispersed resources to a central collection zone through the hierarchical branching transportation network in robot swarms. We demonstrate that biological scaling laws predict how quickly robots forage in simulations of up to thousands of robots searching over thousands of square meters. We then use biological scaling predictions to determine the capacity of depot robots in order to overcome scaling constraints and produce scale-invariant robot swarms. We verify the predictions using ARGoS simulations. While simulations are useful for initial evaluations of the viability of algorithms, our ultimate goal is predicting how algorithms will perform when physical robots interact in the unpredictable conditions of environments they are placed in. The CPFA and the Distributed Deterministic Spiral Algorithm (DDSA) are compared in physical robots in a large outdoor arena. The physical experiments change our conclusion about which algorithm has the best performance, emphasizing the importance of systematically comparing the performance of swarm robotic algorithms in the real world. We illustrate the feasibility of implementing the MPFA with transportation networks in physical robot swarms. Full implementation of the MPFA in an outdoor environment is the next step to demonstrate truly scalable and robust foraging robot swarms

    Sophisticated collective foraging with minimalist agents: a swarm robotics test

    Get PDF
    How groups of cooperative foragers can achieve efficient and robust collective foraging is of interest both to biologists studying social insects and engineers designing swarm robotics systems. Of particular interest are distance-quality trade-offs and swarm-size-dependent foraging strategies. Here we present a collective foraging system based on virtual pheromones, tested in simulation and in swarms of up to 200 physical robots. Our individual agent controllers are highly simplified, as they are based on binary pheromone sensors. Despite being simple, our individual controllers are able to reproduce classical foraging experiments conducted with more capable real ants that sense pheromone concentration and follow its gradient. One key feature of our controllers is a control parameter which balances the trade-off between distance selectivity and quality selectivity of individual foragers. We construct an optimal foraging theory model that accounts for distance and quality of resources, as well as overcrowding, and predicts a swarmsize-dependent strategy. We test swarms implementing our controllers against our optimality model and find that, for moderate swarm sizes, they can be parameterised to approximate the optimal foraging strategy. This study demonstrates the sufficiency of simple individual agent rules to generate sophisticated collective foraging behaviour
    corecore