26,693 research outputs found

    Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity

    Full text link
    We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n^{7/6}). No known input causes our algorithm to use area \Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing, Bordeaux, 201

    Upper and Lower Bounds on Long Dual-Paths in Line Arrangements

    Full text link
    Given a line arrangement A\cal A with nn lines, we show that there exists a path of length n2/3O(n)n^2/3 - O(n) in the dual graph of A\cal A formed by its faces. This bound is tight up to lower order terms. For the bicolored version, we describe an example of a line arrangement with 3k3k blue and 2k2k red lines with no alternating path longer than 14k14k. Further, we show that any line arrangement with nn lines has a coloring such that it has an alternating path of length Ω(n2/logn)\Omega (n^2/ \log n). Our results also hold for pseudoline arrangements.Comment: 19 page

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    Weak Visibility Queries of Line Segments in Simple Polygons

    Full text link
    Given a simple polygon P in the plane, we present new algorithms and data structures for computing the weak visibility polygon from any query line segment in P. We build a data structure in O(n) time and O(n) space that can compute the visibility polygon for any query line segment s in O(k log n) time, where k is the size of the visibility polygon of s and n is the number of vertices of P. Alternatively, we build a data structure in O(n^3) time and O(n^3) space that can compute the visibility polygon for any query line segment in O(k + log n) time.Comment: 16 pages, 9 figures. A preliminary version of this paper appeared in ISAAC 2012 and we have improved results in this full versio
    corecore