29,563 research outputs found

    Ordering structures in vector optimization and applications in medical engineering

    Get PDF
    This manuscript is on the theory and numerical procedures of vector optimization w.r.t. various ordering structures, on recent developments in this area and, most important, on their application to medical engineering. In vector optimization one considers optimization problems with a vector-valued objective map and thus one has to compare elements in a linear space. If the linear space is the finite dimensional space R^m this can be done componentwise. That corresponds to the notion of an Edgeworth-Pareto-optimal solution of a multiobjective optimization problem. Among the multitude of applications which can be modeled by such a multiobjective optimization problem, we present an application in intensity modulated radiation therapy and its solution by a numerical procedure. In case the linear space is arbitrary, maybe infinite dimensional, one may introduce a partial ordering which defines how elements are compared. Such problems arise for instance in magnetic resonance tomography where the number of Hermitian matrices which have to be considered for a control of the maximum local specific absorption rate can be reduced by applying procedures from vector optimization. In addition to a short introduction and the application problem, we present a numerical solution method for solving such vector optimization problems. A partial ordering can be represented by a convex cone which describes the set of directions in which one assumes that the current values are deteriorated. If one assumes that this set may vary dependently on the actually considered element in the linear space, one may replace the partial ordering by a variable ordering structure. This was for instance done in an application in medical image registration. We present a possibility of how to model such variable ordering structures mathematically and how optimality can be defined in such a case. We also give a numerical solution method for the case of a finite set of alternatives

    CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements

    Full text link
    Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a ceteris paribus (all else being equal) interpretation. Such a representation is often compact and arguably quite natural in many circumstances. We provide a formal semantics for this model, and describe how the structure of the network can be exploited in several inference tasks, such as determining whether one outcome dominates (is preferred to) another, ordering a set outcomes according to the preference relation, and constructing the best outcome subject to available evidence

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Learning optimization models in the presence of unknown relations

    Full text link
    In a sequential auction with multiple bidding agents, it is highly challenging to determine the ordering of the items to sell in order to maximize the revenue due to the fact that the autonomy and private information of the agents heavily influence the outcome of the auction. The main contribution of this paper is two-fold. First, we demonstrate how to apply machine learning techniques to solve the optimal ordering problem in sequential auctions. We learn regression models from historical auctions, which are subsequently used to predict the expected value of orderings for new auctions. Given the learned models, we propose two types of optimization methods: a black-box best-first search approach, and a novel white-box approach that maps learned models to integer linear programs (ILP) which can then be solved by any ILP-solver. Although the studied auction design problem is hard, our proposed optimization methods obtain good orderings with high revenues. Our second main contribution is the insight that the internal structure of regression models can be efficiently evaluated inside an ILP solver for optimization purposes. To this end, we provide efficient encodings of regression trees and linear regression models as ILP constraints. This new way of using learned models for optimization is promising. As the experimental results show, it significantly outperforms the black-box best-first search in nearly all settings.Comment: 37 pages. Working pape
    corecore