9,530 research outputs found

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    The Astrophysical Multipurpose Software Environment

    Get PDF
    We present the open source Astrophysical Multi-purpose Software Environment (AMUSE, www.amusecode.org), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting example applications.Comment: 23 pages, 25 figures, accepted for A&

    Study for identification of beneficial uses of space, phase 1. Volume 1: Executive summary

    Get PDF
    The technological effects of the Space Shuttle Program are considered in terms of the development of improved products, processes, and services aimed at benefitting the public from economic and sociological points of view. As such, an outline is provided for a large number of private organizations to suggest and identify specific areas of research and development which can most effectively be exploited in an extraterrestrial environment

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    PRODUCT LINE ARCHITECTURE FOR HADRONTHERAPY CONTROL SYSTEM: APPLICATIONS DEVELOPMENT AND CERTIFICATION

    Get PDF
    Hadrontherapy is the treatment of cancer with charged ion beams. As the charged ion beams used in hadrontherapy are required to be accelerated to very large energies, the particle accelerators used in this treatment are complex and composed of several sub-systems. As a result, control systems are employed for the supervision and control of these accelerators. Currently, The Italian National Hadrontherapy Facility (CNAO) has the objective of modernizing one of the software environments of its control system. Such a project would allow for the integration of new types of devices into the control system, such as mobile devices, as well as introducing newer technologies into the environment. In order to achieve this, this work began with the requirement analysis and definition of a product line architecture for applications of the upgraded control system environment. The product line architecture focuses on reliability, maintainability, and ease of compliance with medical software certification directives. This was followed by the design and development of several software services aimed at allowing the communication of the environments applications and other components of the control system, such as remote file access, relational data access, and OPC-UA. In addition, several libraries and tools have been developed to support the development of future control system applications, following the defined product line architecture. Lastly, a pilot application was created using the tools developed during this work, as well as the preliminary results of a cross-environment integration project. The approach followed in this work is later evaluated by comparing the developed tools to their legacy counterparts, as well as estimating the impact of future applications following the defined product line architecture.Hadrontherapy is the treatment of cancer with charged ion beams. As the charged ion beams used in hadrontherapy are required to be accelerated to very large energies, the particle accelerators used in this treatment are complex and composed of several sub-systems. As a result, control systems are employed for the supervision and control of these accelerators. Currently, The Italian National Hadrontherapy Facility (CNAO) has the objective of modernizing one of the software environments of its control system. Such a project would allow for the integration of new types of devices into the control system, such as mobile devices, as well as introducing newer technologies into the environment. In order to achieve this, this work began with the requirement analysis and definition of a product line architecture for applications of the upgraded control system environment. The product line architecture focuses on reliability, maintainability, and ease of compliance with medical software certification directives. This was followed by the design and development of several software services aimed at allowing the communication of the environments applications and other components of the control system, such as remote file access, relational data access, and OPC-UA. In addition, several libraries and tools have been developed to support the development of future control system applications, following the defined product line architecture. Lastly, a pilot application was created using the tools developed during this work, as well as the preliminary results of a cross-environment integration project. The approach followed in this work is later evaluated by comparing the developed tools to their legacy counterparts, as well as estimating the impact of future applications following the defined product line architecture

    Ancient and historical systems

    Get PDF

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Space biology initiative program definition review. Trade study 3: Hardware miniaturization versus cost

    Get PDF
    The optimum hardware miniaturization level with the lowest cost impact for space biology hardware was determined. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. A mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization are provided

    Space biology initiative program definition review. Trade study 4: Design modularity and commonality

    Get PDF
    The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided
    corecore