359 research outputs found

    Combinatorial laplacians and positivity under partial transpose

    Full text link
    Density matrices of graphs are combinatorial laplacians normalized to have trace one (Braunstein \emph{et al.} \emph{Phys. Rev. A,} \textbf{73}:1, 012320 (2006)). If the vertices of a graph are arranged as an array, then its density matrix carries a block structure with respect to which properties such as separability can be considered. We prove that the so-called degree-criterion, which was conjectured to be necessary and sufficient for separability of density matrices of graphs, is equivalent to the PPT-criterion. As such it is not sufficient for testing the separability of density matrices of graphs (we provide an explicit example). Nonetheless, we prove the sufficiency when one of the array dimensions has length two (for an alternative proof see Wu, \emph{Phys. Lett. A}\textbf{351} (2006), no. 1-2, 18--22). Finally we derive a rational upper bound on the concurrence of density matrices of graphs and show that this bound is exact for graphs on four vertices.Comment: 19 pages, 7 eps figures, final version accepted for publication in Math. Struct. in Comp. Sc

    The laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states

    Full text link
    We study entanglement properties of mixed density matrices obtained from combinatorial Laplacians. This is done by introducing the notion of the density matrix of a graph. We characterize the graphs with pure density matrices and show that the density matrix of a graph can be always written as a uniform mixture of pure density matrices of graphs. We consider the von Neumann entropy of these matrices and we characterize the graphs for which the minimum and maximum values are attained. We then discuss the problem of separability by pointing out that separability of density matrices of graphs does not always depend on the labelling of the vertices. We consider graphs with a tensor product structure and simple cases for which combinatorial properties are linked to the entanglement of the state. We calculate the concurrence of all graph on four vertices representing entangled states. It turns out that for some of these graphs the value of the concurrence is exactly fractional.Comment: 20 pages, 11 figure

    Entanglement properties of quantum grid states

    Get PDF
    Grid states form a discrete set of mixed quantum states that can be described by graphs. We characterize the entanglement properties of these states and provide methods to evaluate entanglement criteria for grid states in a graphical way. With these ideas we find bound entangled grid states for two-particle systems of any dimension and multiparticle grid states that provide examples for the different aspects of genuine multiparticle entanglement. Our findings suggest that entanglement theory for grid states, although being a discrete set, has already a complexity similar to the one for general states.Comment: 6 pages, 4 figures, v2: small changes, final versio
    • …
    corecore