40 research outputs found

    On Equivalence of Known Families of APN Functions in Small Dimensions

    Full text link
    In this extended abstract, we computationally check and list the CCZ-inequivalent APN functions from infinite families on F2n\mathbb{F}_2^n for n from 6 to 11. These functions are selected with simplest coefficients from CCZ-inequivalent classes. This work can simplify checking CCZ-equivalence between any APN function and infinite APN families.Comment: This paper is already in "PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

    Relation between o-equivalence and EA-equivalence for Niho bent functions

    Get PDF
    Boolean functions, and bent functions in particular, are considered up to so-called EA-equivalence, which is the most general known equivalence relation preserving bentness of functions. However, for a special type of bent functions, so-called Niho bent functions there is a more general equivalence relation called o-equivalence which is induced from the equivalence of o-polynomials. In the present work we study, for a given o-polynomial, a general construction which provides all possible o-equivalent Niho bent functions, and we considerably simplify it to a form which excludes EA-equivalent cases. That is, we identify all cases which can potentially lead to pairwise EA-inequivalent Niho bent functions derived from o-equivalence of any given Niho bent function. Furthermore, we determine all pairwise EA-inequivalent Niho bent functions arising from all known o-polynomials via o-equivalence.publishedVersio

    ON DILLON\u27S CLASS H OF BENT FUNCTIONS, NIHO BENT FUNCTIONS AND O-POLYNOMIALS

    Get PDF
    One of the classes of bent Boolean functions introduced by John Dillon in his thesis is family H. While this class corresponds to a nice original construction of bent functions in bivariate form, Dillon could exhibit in it only functions which already belonged to the well- known Maiorana-McFarland class. We first notice that H can be extended to a slightly larger class that we denote by H. We observe that the bent functions constructed via Niho power functions, which four examples are known, due to Dobbertin et al. and to Leander-Kholosha, are the univariate form of the functions of class H. Their restrictions to the vector spaces uF2n=2 , u 2 F? 2n, are linear. We also characterize the bent functions whose restrictions to the uF2n=2 \u27s are affine. We answer to the open question raised by Dobbertin et al. in JCT A 2006 on whether the duals of the Niho bent functions introduced in the paper are Niho bent as well, by explicitely calculating the dual of one of these functions. We observe that this Niho function also belongs to the Maiorana-McFarland class, which brings us back to the problem of knowing whether H (or H) is a subclass of the Maiorana-McFarland completed class. We then show that the condition for a function in bivariate form to belong to class H is equivalent to the fact that a polynomial directly related to its definition is an o-polynomial and we deduce eight new cases of bent functions in H which are potentially new bent functions and most probably not affine equivalent to Maiorana-McFarland functions

    Linear Codes from Some 2-Designs

    Full text link
    A classical method of constructing a linear code over \gf(q) with a tt-design is to use the incidence matrix of the tt-design as a generator matrix over \gf(q) of the code. This approach has been extensively investigated in the literature. In this paper, a different method of constructing linear codes using specific classes of 22-designs is studied, and linear codes with a few weights are obtained from almost difference sets, difference sets, and a type of 22-designs associated to semibent functions. Two families of the codes obtained in this paper are optimal. The linear codes presented in this paper have applications in secret sharing and authentication schemes, in addition to their applications in consumer electronics, communication and data storage systems. A coding-theory approach to the characterisation of highly nonlinear Boolean functions is presented

    A note on semi-bent functions with multiple trace terms and hyperelliptic curves

    Get PDF
    Semi-bent functions with even number of variables are a class of important Boolean functions whose Hadamard transform takes three values. In this note we are interested in the property of semi-bentness of Boolean functions defined on the Galois field F2nF_{2^n} (n even) with multiple trace terms obtained via Niho functions and two Dillon-like functions (the first one has been studied by Mesnager and the second one have been studied very recently by Wang, Tang, Qi, Yang and Xu). We subsequently give a connection between the property of semi-bentness and the number of rational points on some associated hyperelliptic curves. We use the hyperelliptic curve formalism to reduce the computational complexity in order to provide a polynomial time and space test leading to an efficient characterization of semi-bentness of such functions (which includes an efficient characterization of the hyperbent functions proposed by Wang et al.). The idea of this approach goes back to the recent work of Lisonek on the hyperbent functions studied by Charpin and Gong
    corecore