5,979 research outputs found

    On Security and reliability using cooperative transmissions in sensor networks

    Get PDF
    Cooperative transmissions have received recent attention and research papers have demonstrated their benefits for wireless networks. Such benefits include improving the reliability of links through diversity and/or increasing the reach of a link compared to a single transmitter transmitting to a single receiver (single-input single-output or SISO). In one form of cooperative transmissions, multiple nodes can act as virtual antenna elements and provide diversity gain or range improvement using space-time coding. In a multi-hop ad hoc or sensor network, a source node can make use of its neighbors as relays with itself to reach an intermediate node with greater reliability or at a larger distance than otherwise possible. The intermediate node will use its neighbors in a similar manner and this process continues till the destination is reached. Thus, for the same reliability of a link as SISO, the number of hops between a source and destination may be reduced using cooperative transmissions as each hop spans a larger distance. However, the presence of ma-licious or compromised nodes in the network impacts the benefits obtained with cooperative transmissions. Using more relays can increase the reach of a link, but if one or more relays are malicious, the transmission may fail. However, the relationships between the number of relays, the number of hops, and success probabilities are not trivial to determine. In this paper, we analyze this problem to understand the conditions under which cooperative transmissions fare better or worse than SISO transmissions. We take into consideration additional parameters such as the path-loss exponent and provide a framework that allows us to evaluate the conditions when cooperative transmissions are better than SISO transmissions. This analysis provides insights that can be employed before resorting to simulations or experimentation. © Springer Science+Business Media, LLC 2012

    On Security and Reliability using Cooperative Transmissions in Sensor Networks

    Get PDF
    Recent work on cooperative communications has demonstrated benefits in terms of improving the reliability of links through diversity and/or increasing the reach of a link compared to a single transmitter transmitting to a single receiver (single-input single-output or SISO). In one form of cooperative transmissions, multiple nodes can act as virtual antenna elements and provide such benefits using space-time coding. In a multi-hop sensor network, a source node can make use of its neighbors as relays with itself to reach an intermediate node, which will use its neighbors and so on to reach the destination. For the same reliability of a link as SISO, the number of hops between a source and destination may be reduced using cooperative transmissions. However, the presence of malicious or compromised nodes in the network impacts the use of cooperative transmissions. Using more relays can increase the reach of a link, but if one or more relays are malicious, the transmission may fail. In this paper, we analyze this problem to understand the conditions under which cooperative transmissions may fare better or worse than SISO transmissions

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    BAN-GZKP: Optimal Zero Knowledge Proof based Scheme for Wireless Body Area Networks

    Get PDF
    BANZKP is the best to date Zero Knowledge Proof (ZKP) based secure lightweight and energy efficient authentication scheme designed for Wireless Area Network (WBAN). It is vulnerable to several security attacks such as the replay attack, Distributed Denial-of-Service (DDoS) attacks at sink and redundancy information crack. However, BANZKP needs an end-to-end authentication which is not compliant with the human body postural mobility. We propose a new scheme BAN-GZKP. Our scheme improves both the security and postural mobility resilience of BANZKP. Moreover, BAN-GZKP uses only a three-phase authentication which is optimal in the class of ZKP protocols. To fix the security vulnerabilities of BANZKP, BAN-GZKP uses a novel random key allocation and a Hop-by-Hop authentication definition. We further prove the reliability of our scheme to various attacks including those to which BANZKP is vulnerable. Furthermore, via extensive simulations we prove that our scheme, BAN-GZKP, outperforms BANZKP in terms of reliability to human body postural mobility for various network parameters (end-to-end delay, number of packets exchanged in the network, number of transmissions). We compared both schemes using representative convergecast strategies with various transmission rates and human postural mobility. Finally, it is important to mention that BAN-GZKP has no additional cost compared to BANZKP in terms memory, computational complexity or energy consumption

    Security of 5G-V2X: Technologies, Standardization and Research Directions

    Full text link
    Cellular-Vehicle to Everything (C-V2X) aims at resolving issues pertaining to the traditional usability of Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) networking. Specifically, C-V2X lowers the number of entities involved in vehicular communications and allows the inclusion of cellular-security solutions to be applied to V2X. For this, the evolvement of LTE-V2X is revolutionary, but it fails to handle the demands of high throughput, ultra-high reliability, and ultra-low latency alongside its security mechanisms. To counter this, 5G-V2X is considered as an integral solution, which not only resolves the issues related to LTE-V2X but also provides a function-based network setup. Several reports have been given for the security of 5G, but none of them primarily focuses on the security of 5G-V2X. This article provides a detailed overview of 5G-V2X with a security-based comparison to LTE-V2X. A novel Security Reflex Function (SRF)-based architecture is proposed and several research challenges are presented related to the security of 5G-V2X. Furthermore, the article lays out requirements of Ultra-Dense and Ultra-Secure (UD-US) transmissions necessary for 5G-V2X.Comment: 9 pages, 6 figures, Preprin

    Security versus Reliability Analysis of Opportunistic Relaying

    Full text link
    Physical-layer security is emerging as a promising paradigm of securing wireless communications against eavesdropping between legitimate users, when the main link spanning from source to destination has better propagation conditions than the wiretap link from source to eavesdropper. In this paper, we identify and analyze the tradeoffs between the security and reliability of wireless communications in the presence of eavesdropping attacks. Typically, the reliability of the main link can be improved by increasing the source's transmit power (or decreasing its date rate) to reduce the outage probability, which unfortunately increases the risk that an eavesdropper succeeds in intercepting the source message through the wiretap link, since the outage probability of the wiretap link also decreases when a higher transmit power (or lower date rate) is used. We characterize the security-reliability tradeoffs (SRT) of conventional direct transmission from source to destination in the presence of an eavesdropper, where the security and reliability are quantified in terms of the intercept probability by an eavesdropper and the outage probability experienced at the destination, respectively. In order to improve the SRT, we then propose opportunistic relay selection (ORS) and quantify the attainable SRT improvement upon increasing the number of relays. It is shown that given the maximum tolerable intercept probability, the outage probability of our ORS scheme approaches zero for N→∞N \to \infty, where NN is the number of relays. Conversely, given the maximum tolerable outage probability, the intercept probability of our ORS scheme tends to zero for N→∞N \to \infty.Comment: 9 pages. IEEE Transactions on Vehicular Technology, 201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    • …
    corecore