88,092 research outputs found

    Location-Verification and Network Planning via Machine Learning Approaches

    Full text link
    In-region location verification (IRLV) in wireless networks is the problem of deciding if user equipment (UE) is transmitting from inside or outside a specific physical region (e.g., a safe room). The decision process exploits the features of the channel between the UE and a set of network access points (APs). We propose a solution based on machine learning (ML) implemented by a neural network (NN) trained with the channel features (in particular, noisy attenuation values) collected by the APs for various positions both inside and outside the specific region. The output is a decision on the UE position (inside or outside the region). By seeing IRLV as an hypothesis testing problem, we address the optimal positioning of the APs for minimizing either the area under the curve (AUC) of the receiver operating characteristic (ROC) or the cross entropy (CE) between the NN output and ground truth (available during the training). In order to solve the minimization problem we propose a twostage particle swarm optimization (PSO) algorithm. We show that for a long training and a NN with enough neurons the proposed solution achieves the performance of the Neyman-Pearson (N-P) lemma.Comment: Accepted for Workshop on Machine Learning for Communications, June 07 2019, Avignon, Franc

    Steganography: a class of secure and robust algorithms

    Full text link
    This research work presents a new class of non-blind information hiding algorithms that are stego-secure and robust. They are based on some finite domains iterations having the Devaney's topological chaos property. Thanks to a complete formalization of the approach we prove security against watermark-only attacks of a large class of steganographic algorithms. Finally a complete study of robustness is given in frequency DWT and DCT domains.Comment: Published in The Computer Journal special issue about steganograph

    Resilient Distributed Energy Management for Systems of Interconnected Microgrids

    Get PDF
    In this paper, distributed energy management of interconnected microgrids, which is stated as a dynamic economic dispatch problem, is studied. Since the distributed approach requires cooperation of all local controllers, when some of them do not comply with the distributed algorithm that is applied to the system, the performance of the system might be compromised. Specifically, it is considered that adversarial agents (microgrids with their controllers) might implement control inputs that are different than the ones obtained from the distributed algorithm. By performing such behavior, these agents might have better performance at the expense of deteriorating the performance of the regular agents. This paper proposes a methodology to deal with this type of adversarial agents such that we can still guarantee that the regular agents can still obtain feasible, though suboptimal, control inputs in the presence of adversarial behaviors. The methodology consists of two steps: (i) the robustification of the underlying optimization problem and (ii) the identification of adversarial agents, which uses hypothesis testing with Bayesian inference and requires to solve a local mixed-integer optimization problem. Furthermore, the proposed methodology also prevents the regular agents to be affected by the adversaries once the adversarial agents are identified. In addition, we also provide a sub-optimality certificate of the proposed methodology.Comment: 8 pages, Conference on Decision and Control (CDC) 201
    • …
    corecore