11,770 research outputs found

    High Precision Astrometry with MICADO at the European Extremely Large Telescope

    Full text link
    In this article we identify and discuss various statistical and systematic effects influencing the astrometric accuracy achievable with MICADO, the near-infrared imaging camera proposed for the 42-metre European Extremely Large Telescope (E-ELT). These effects are instrumental (e.g. geometric distortion), atmospheric (e.g. chromatic differential refraction), and astronomical (reference source selection). We find that there are several phenomena having impact on ~100 micro-arcsec scales, meaning they can be substantially larger than the theoretical statistical astrometric accuracy of an optical/NIR 42m-telescope. Depending on type, these effects need to be controlled via dedicated instrumental design properties or via dedicated calibration procedures. We conclude that if this is done properly, astrometric accuracies of 40 micro-arcsec or better - with 40 micro-arcsec/year in proper motions corresponding to ~20 km/s at 100 kpc distance - can be achieved in one epoch of actual observationsComment: 15 pages, 9 figures, 3 tables. Accepted by MNRA

    Video Compression from the Hardware Perspective

    Get PDF

    On Sparse Coding as an Alternate Transform in Video Coding

    Get PDF
    In video compression, specifically in the prediction process, a residual signal is calculated by subtracting the predicted from the original signal, which represents the error of this process. This residual signal is usually transformed by a discrete cosine transform (DCT) from the pixel, into the frequency domain. It is then quantized, which filters more or less high frequencies (depending on a quality parameter). The quantized signal is then entropy encoded usually by a context-adaptive binary arithmetic coding engine (CABAC), and written into a bitstream. In the decoding phase the process is reversed. DCT and quantization in combination are efficient tools, but they are not performing well at lower bitrates and creates distortion and side effect. The proposed method uses sparse coding as an alternate transform which compresses well at lower bitrates, but not well at high bitrates. The decision which transform is used is based on a rate-distortion optimization (RDO) cost calculation to get both transforms in their optimal performance range. The proposed method is implemented in high efficient video coding (HEVC) test model HM-16.18 and high efficient video coding for screen content coding (HEVC-SCC) for test model HM-16.18+SCM-8.7, with a Bjontegaard rate difference (BD-rate) saving, which archives up to 5.5%, compared to the standard

    SIMD acceleration for HEVC decoding

    Get PDF
    Single instruction multiple data (SIMD) instructions have been commonly used to accelerate video codecs. The recently introduced High Efficiency Video Coding (HEVC) codec like its predecessors is based on the hybrid video codec principle and, therefore, is also well suited to be accelerated with SIMD. In this paper we present the SIMD optimization for the entire HEVC decoder for all major SIMD instruction set architectures. Evaluation has been performed on 14 mobile and PC platforms covering most major architectures released in recent years. With SIMD, up to 5× speedup can be achieved over the entire HEVC decoder, resulting in up to 133 and 37.8 frames/s on average on a single core for Main profile 1080p and Main10 profile 2160p sequences, respectively.EC/FP7/288653/EU/Low-Power Parallel Computing on GPUs/LPGP
    • 

    corecore