33,953 research outputs found

    Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes

    Full text link
    We introduce the notion of the stopping redundancy hierarchy of a linear block code as a measure of the trade-off between performance and complexity of iterative decoding for the binary erasure channel. We derive lower and upper bounds for the stopping redundancy hierarchy via Lovasz's Local Lemma and Bonferroni-type inequalities, and specialize them for codes with cyclic parity-check matrices. Based on the observed properties of parity-check matrices with good stopping redundancy characteristics, we develop a novel decoding technique, termed automorphism group decoding, that combines iterative message passing and permutation decoding. We also present bounds on the smallest number of permutations of an automorphism group decoder needed to correct any set of erasures up to a prescribed size. Simulation results demonstrate that for a large number of algebraic codes, the performance of the new decoding method is close to that of maximum likelihood decoding.Comment: 40 pages, 6 figures, 10 tables, submitted to IEEE Transactions on Information Theor

    Universal lossless source coding with the Burrows Wheeler transform

    Get PDF
    The Burrows Wheeler transform (1994) is a reversible sequence transformation used in a variety of practical lossless source-coding algorithms. In each, the BWT is followed by a lossless source code that attempts to exploit the natural ordering of the BWT coefficients. BWT-based compression schemes are widely touted as low-complexity algorithms giving lossless coding rates better than those of the Ziv-Lempel codes (commonly known as LZ'77 and LZ'78) and almost as good as those achieved by prediction by partial matching (PPM) algorithms. To date, the coding performance claims have been made primarily on the basis of experimental results. This work gives a theoretical evaluation of BWT-based coding. The main results of this theoretical evaluation include: (1) statistical characterizations of the BWT output on both finite strings and sequences of length n → ∞, (2) a variety of very simple new techniques for BWT-based lossless source coding, and (3) proofs of the universality and bounds on the rates of convergence of both new and existing BWT-based codes for finite-memory and stationary ergodic sources. The end result is a theoretical justification and validation of the experimentally derived conclusions: BWT-based lossless source codes achieve universal lossless coding performance that converges to the optimal coding performance more quickly than the rate of convergence observed in Ziv-Lempel style codes and, for some BWT-based codes, within a constant factor of the optimal rate of convergence for finite-memory source

    The Trapping Redundancy of Linear Block Codes

    Full text link
    We generalize the notion of the stopping redundancy in order to study the smallest size of a trapping set in Tanner graphs of linear block codes. In this context, we introduce the notion of the trapping redundancy of a code, which quantifies the relationship between the number of redundant rows in any parity-check matrix of a given code and the size of its smallest trapping set. Trapping sets with certain parameter sizes are known to cause error-floors in the performance curves of iterative belief propagation decoders, and it is therefore important to identify decoding matrices that avoid such sets. Bounds on the trapping redundancy are obtained using probabilistic and constructive methods, and the analysis covers both general and elementary trapping sets. Numerical values for these bounds are computed for the [2640,1320] Margulis code and the class of projective geometry codes, and compared with some new code-specific trapping set size estimates.Comment: 12 pages, 4 tables, 1 figure, accepted for publication in IEEE Transactions on Information Theor

    Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance

    Full text link
    Parameters of LDPC codes, such as minimum distance, stopping distance, stopping redundancy, girth of the Tanner graph, and their influence on the frame error rate performance of the BP, ML and near-ML decoding over a BEC and an AWGN channel are studied. Both random and structured LDPC codes are considered. In particular, the BP decoding is applied to the code parity-check matrices with an increasing number of redundant rows, and the convergence of the performance to that of the ML decoding is analyzed. A comparison of the simulated BP, ML, and near-ML performance with the improved theoretical bounds on the error probability based on the exact weight spectrum coefficients and the exact stopping size spectrum coefficients is presented. It is observed that decoding performance very close to the ML decoding performance can be achieved with a relatively small number of redundant rows for some codes, for both the BEC and the AWGN channels
    • 

    corecore