2,363 research outputs found

    Type classes for efficient exact real arithmetic in Coq

    Get PDF
    Floating point operations are fast, but require continuous effort on the part of the user in order to ensure that the results are correct. This burden can be shifted away from the user by providing a library of exact analysis in which the computer handles the error estimates. Previously, we [Krebbers/Spitters 2011] provided a fast implementation of the exact real numbers in the Coq proof assistant. Our implementation improved on an earlier implementation by O'Connor by using type classes to describe an abstract specification of the underlying dense set from which the real numbers are built. In particular, we used dyadic rationals built from Coq's machine integers to obtain a 100 times speed up of the basic operations already. This article is a substantially expanded version of [Krebbers/Spitters 2011] in which the implementation is extended in the various ways. First, we implement and verify the sine and cosine function. Secondly, we create an additional implementation of the dense set based on Coq's fast rational numbers. Thirdly, we extend the hierarchy to capture order on undecidable structures, while it was limited to decidable structures before. This hierarchy, based on type classes, allows us to share theory on the naturals, integers, rationals, dyadics, and reals in a convenient way. Finally, we obtain another dramatic speed-up by avoiding evaluation of termination proofs at runtime.Comment: arXiv admin note: text overlap with arXiv:1105.275

    The Hardness of Finding Linear Ranking Functions for Lasso Programs

    Full text link
    Finding whether a linear-constraint loop has a linear ranking function is an important key to understanding the loop behavior, proving its termination and establishing iteration bounds. If no preconditions are provided, the decision problem is known to be in coNP when variables range over the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals. The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems), and possibly indicates an even stronger lower bound (subject to open problems in VAS theory). The lower bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also given for the problem of deciding if a linear ranking-function supported by a particular form of inductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.Comment: In Proceedings GandALF 2014, arXiv:1408.5560. I thank the organizers of the Dagstuhl Seminar 14141, "Reachability Problems for Infinite-State Systems", for the opportunity to present an early draft of this wor
    • …
    corecore