1,413 research outputs found

    Personal area technologies for internetworked services

    Get PDF

    Radio resource management for V2V multihop communication considering adjacent channel interference

    Get PDF
    This paper investigates schemes for multihop scheduling and power control for vehicle-to-vehicle (V2V) multicast communication, taking into account the effects of both co-channel interference and adjacent channel interference, such that requirements on latency or age of information (AoI) are satisfied. Optimal performance can be achieved by formulating and solving mixed Boolean linear programming (MBLP) optimization problems for various performance metrics, including network throughput and connectivity. Fairness among network nodes (vehicles) is addressed by considering formulations that maximizes the worst-case network node performance. Solving the optimization problem comes at the cost of significant computational complexity for large networks and requires that (slow) channel state information is gathered at a central point. To address these issues, a clustering method is proposed to partition the optimization problem into a set of smaller problems, which reduces the overall computational complexity, and a decentralized algorithm that does not need channel state information is provided

    Lightly synchronized Multipacket Reception in Machine-Type Communications Networks

    Get PDF
    Machine Type Communication (MTC) applications were designed to monitor and control elements of our surroundings and environment. MTC applications have a different set of requirements compared to the traditional communication devices, with Machine to Machine (M2M) data being mostly short, asynchronous, bursty and sometimes requiring end-to-end delays below 1ms. With the growth of MTC, the new generation of mobile communications has to be able to present different types of services with very different requirements, i.e. the same network has to be capable of "supplying" connection to the user that just wants to download a video or use social media, allowing at the same time MTC that has completely different requirements, without deteriorating both experiences. The challenges associated to the implementation of MTC require disruptive changes at the Physical (PHY) and Medium Access Control (MAC) layers, that lead to a better use of the spectrum available. The orthogonality and synchronization requirements of the PHY layer of current Long Term Evolution Advanced (LTE-A) radio access network (based on glsofdm and Single Carrier Frequency Domain Equalization (SC-FDE)) are obstacles for this new 5th Generation (5G) architecture. Generalized Frequency Division Multiplexing (GFDM) and other modulation techniques were proposed as candidates for the 5G PHY layer, however they also suffer from visible degradation when the transmitter and receiver are not synchronized, leading to a poor performance when collisions occur in an asynchronous MAC layer. This dissertation addresses the requirements of M2M traffic at the MAC layer applying multipacket reception (MPR) techniques to handle the bursty nature of the traffic and synchronization tones and optimized back-off approaches to reduce the delay. It proposes a new MAC protocol and analyses its performance analytically considering an SC-FDE modulation. The models are validated using a system level cross-layer simulator developed in MATLAB, which implements the MAC protocol and applies PHY layer performance models. The results show that the MAC’s latency depends mainly on the number of users and the load of each user, and can be controlled using these two parameters

    OFDM Allocation Optimization for Crosstalk Mitigation in Multiple Free-Space Optical Interconnection Links

    Get PDF
    Abstract-The growing demand for high interconnection speed in next-generation computers is driving the technology-shift for communication from the electronic to the optic domain. One of the favored interconnection technologies for this task is the free-space optical interconnect (FSOI). FSOI technology uses laser links between computer components and provides a lower bound on propagation delay due to the low index of refraction of air, when compared with the indices common in waveguide technologies. FSOIs based on DC-biased optical orthogonal frequency-division multiplexing (DCO-OFDM) may provide excellent data throughput in intensity modulation/direct detection (IM/DD) systems. However, the main drawback limiting the implementation of FSOIs is the inevitable trade-off between interconnection density and the crosstalk level, resulting from the diffraction effect and from optical misalignment. The purpose of this paper is to promote improved interconnection density of such FSOIs by use of inherent DCO-OFDM resource allocation capabilities. The crosstalk-resulted interference was formulated as joint multi-link bit-and-power allocation optimization. The theoretical analysis reveals general guidelines for dense FSOI. Further, a reduced-complexity numerical sub-optimal algorithm for joint multi-link bit-and-power allocation was proposed. The simulation results show that the proposed suboptimal algorithm outcome is close to the theoretical optimal performance

    Satellite-based internet: A tutorial

    Get PDF
    In a satellite-based Internet system, satellites are used to interconnect heterogeneous network segments and to provide ubiquitous direct Internet access to homes and businesses. This article presents satellite-based Internet architectures and discusses multiple access control, routing, satellite transport, and integrating satellite networks into the global Internet.published_or_final_versio

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Satellite-based internet: A tutorial

    Get PDF
    In a satellite-based Internet system, satellites are used to interconnect heterogeneous network segments and to provide ubiquitous direct Internet access to homes and businesses. This article presents satellite-based Internet architectures and discusses multiple access control, routing, satellite transport, and integrating satellite networks into the global Internet.published_or_final_versio

    Design of RF Frontend Unit to Avoid Intermodulation Using Arduino Uno

    Get PDF
    Designing a Radio Frequency (RF) front end is vastly realized for determining the level of integration that is required in the signal chain inside the receivers to be idealistic. The receivers is susceptible to harmful intermodulation due to nonlinear RF front ends. In this paper, intermodulation distortion is avoided by a selective prototype hardware design of RF fort end which is connected with the Arduino Uno for controlling the power levels. The measurements are tested out as a result of injecting a signals within x-band frequencies and chosen different power levels are assumed. These measurements is revealed an accepted results for the intermodulation avoidance
    corecore