42,363 research outputs found

    Gozar: NAT-friendly Peer Sampling with One-Hop Distributed NAT Traversal

    Get PDF
    Gossip-based peer sampling protocols have been widely used as a building block for many large-scale distributed applications. However, Network Address Translation gateways (NATs) cause most existing gossiping protocols to break down, as nodes cannot establish direct connections to nodes behind NATs (private nodes). In addition, most of the existing NAT traversal algorithms for establishing connectivity to private nodes rely on third party servers running at a well-known, public IP addresses. In this paper, we present Gozar, a gossip-based peer sampling service that: (i) provides uniform random samples in the presence of NATs, and (ii) enables direct connectivity to sampled nodes using a fully distributed NAT traversal service, where connection messages require only a single hop to connect to private nodes. We show in simulation that Gozar preserves the randomness properties of a gossip-based peer sampling service. We show the robustness of Gozar when a large fraction of nodes reside behind NATs and also in catastrophic failure scenarios. For example, if 80% of nodes are behind NATs, and 80% of the nodes fail, more than 92% of the remaining nodes stay connected. In addition, we compare Gozar with existing NAT-friendly gossip-based peer sampling services, Nylon and ARRG. We show that Gozar is the only system that supports one-hop NAT traversal, and its overhead is roughly half of Nylon’s

    Measuring internet activity: a (selective) review of methods and metrics

    Get PDF
    Two Decades after the birth of the World Wide Web, more than two billion people around the world are Internet users. The digital landscape is littered with hints that the affordances of digital communications are being leveraged to transform life in profound and important ways. The reach and influence of digitally mediated activity grow by the day and touch upon all aspects of life, from health, education, and commerce to religion and governance. This trend demands that we seek answers to the biggest questions about how digitally mediated communication changes society and the role of different policies in helping or hindering the beneficial aspects of these changes. Yet despite the profusion of data the digital age has brought upon us—we now have access to a flood of information about the movements, relationships, purchasing decisions, interests, and intimate thoughts of people around the world—the distance between the great questions of the digital age and our understanding of the impact of digital communications on society remains large. A number of ongoing policy questions have emerged that beg for better empirical data and analyses upon which to base wider and more insightful perspectives on the mechanics of social, economic, and political life online. This paper seeks to describe the conceptual and practical impediments to measuring and understanding digital activity and highlights a sample of the many efforts to fill the gap between our incomplete understanding of digital life and the formidable policy questions related to developing a vibrant and healthy Internet that serves the public interest and contributes to human wellbeing. Our primary focus is on efforts to measure Internet activity, as we believe obtaining robust, accurate data is a necessary and valuable first step that will lead us closer to answering the vitally important questions of the digital realm. Even this step is challenging: the Internet is difficult to measure and monitor, and there is no simple aggregate measure of Internet activity—no GDP, no HDI. In the following section we present a framework for assessing efforts to document digital activity. The next three sections offer a summary and description of many of the ongoing projects that document digital activity, with two final sections devoted to discussion and conclusions

    Large scale probabilistic available bandwidth estimation

    Full text link
    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a path while achieving, with specified probability, an output rate that is almost as large as the input rate. PAB is expressed directly in terms of the measurable output rate and includes adjustable parameters that allow the user to adapt to different application requirements. Our probabilistic framework to estimate network-wide probabilistic available bandwidth is based on packet trains, Bayesian inference, factor graphs and active sampling. We deploy our tool on the PlanetLab network and our results show that we can obtain accurate estimates with a much smaller measurement overhead compared to existing approaches.Comment: Submitted to Computer Network
    • …
    corecore