3,354 research outputs found

    Simulation of seismic events induced by CO2 injection at In Salah, Algeria

    Get PDF
    Date of Acceptance: 18/06/2015 Acknowledgments The authors would like to thank the operators of the In Salah JV and JIP, BP, Statoil and Sonatrach, for providing the data shown in this paper, and for giving permission to publish. Midland Valley Exploration are thanked for the use of their Move software for geomechanical restoration. JPV is a Natural Environment Research Council (NERC) Early Career Research Fellow (Grant NE/I021497/1) and ALS is funded by a NERC Partnership Research Grant (Grant NE/I010904).Peer reviewedPublisher PD

    The evaluation of failure detection and isolation algorithms for restructurable control

    Get PDF
    Three failure detection and identification techniques were compared to determine their usefulness in detecting and isolating failures in an aircraft flight control system; excluding sensor and flight control computer failures. The algorithms considered were the detection filter, the Generalized Likelihood Ratio test and the Orthogonal Series Generalized Likelihood Ratio test. A modification to the basic detection filter is also considered which uses secondary filtering of the residuals to produce unidirectional failure signals. The algorithms were evaluated by testing their ability to detect and isolate control surface failures in a nonlinear simulation of a C-130 aircraft. It was found that failures of some aircraft controls are difficult to distinguish because they have a similar effect on the dynamics of the vehicle. Quantitative measures for evaluating the distinguishability of failures are considered. A system monitoring strategy for implementing the failure detection and identification techniques was considered. This strategy identified the mix of direct measurement of failures versus the computation of failure necessary for implementation of the technology in an aircraft system

    Graph Theoretical Analysis of the Dynamic Lines of Collaboration Model for Disruption Response

    Get PDF
    The Dynamic Lines of Collaboration (DLOC) model was developed to address the Network-to-Network (N2N) service challenge found in e-Work networks with pervasive connectivity. A variant of the N2N service challenge found in emerging Cyber-Physical Infrastructures (CPI) networks is the collaborative disruption response (CDR) operation under cascading failures. The DLOC model has been validated as an appropriate modelling tool to aid the design of disruption responders in CPIs by eliciting the dynamic relation among the service team when handling service requests from clients in the CPI network
    corecore