27,221 research outputs found

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k≥3k \geq 3, deciding whether src(G)≤k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2−ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    Notes on the connectivity of Cayley coset digraphs

    Full text link
    Hamidoune's connectivity results for hierarchical Cayley digraphs are extended to Cayley coset digraphs and thus to arbitrary vertex transitive digraphs. It is shown that if a Cayley coset digraph can be hierarchically decomposed in a certain way, then it is optimally vertex connected. The results are obtained by extending the methods used by Hamidoune. They are used to show that cycle-prefix graphs are optimally vertex connected. This implies that cycle-prefix graphs have good fault tolerance properties.Comment: 15 page

    Modeling heterogeneity in random graphs through latent space models: a selective review

    Get PDF
    We present a selective review on probabilistic modeling of heterogeneity in random graphs. We focus on latent space models and more particularly on stochastic block models and their extensions that have undergone major developments in the last five years

    Generation of cubic graphs and snarks with large girth

    Full text link
    We describe two new algorithms for the generation of all non-isomorphic cubic graphs with girth at least k≥5k\ge 5 which are very efficient for 5≤k≤75\le k \le 7 and show how these algorithms can be efficiently restricted to generate snarks with girth at least kk. Our implementation of these algorithms is more than 30, respectively 40 times faster than the previously fastest generator for cubic graphs with girth at least 6 and 7, respectively. Using these generators we have also generated all non-isomorphic snarks with girth at least 6 up to 38 vertices and show that there are no snarks with girth at least 7 up to 42 vertices. We present and analyse the new list of snarks with girth 6.Comment: 27 pages (including appendix

    On the fixed-parameter tractability of the maximum connectivity improvement problem

    Full text link
    In the Maximum Connectivity Improvement (MCI) problem, we are given a directed graph G=(V,E)G=(V,E) and an integer BB and we are asked to find BB new edges to be added to GG in order to maximize the number of connected pairs of vertices in the resulting graph. The MCI problem has been studied from the approximation point of view. In this paper, we approach it from the parameterized complexity perspective in the case of directed acyclic graphs. We show several hardness and algorithmic results with respect to different natural parameters. Our main result is that the problem is W[2]W[2]-hard for parameter BB and it is FPT for parameters ∣V∣−B|V| - B and ν\nu, the matching number of GG. We further characterize the MCI problem with respect to other complementary parameters.Comment: 15 pages, 1 figur
    • …
    corecore