2,026 research outputs found

    An Evaluation of Digital Image Forgery Detection Approaches

    Full text link
    With the headway of the advanced image handling software and altering tools, a computerized picture can be effectively controlled. The identification of image manipulation is vital in light of the fact that an image can be utilized as legitimate confirmation, in crime scene investigation, and in numerous different fields. The image forgery detection techniques intend to confirm the credibility of computerized pictures with no prior information about the original image. There are numerous routes for altering a picture, for example, resampling, splicing, and copy-move. In this paper, we have examined different type of image forgery and their detection techniques; mainly we focused on pixel based image forgery detection techniques

    Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

    Full text link
    With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets

    Exposing DeepFake Videos By Detecting Face Warping Artifacts

    Full text link
    In this work, we describe a new deep learning based method that can effectively distinguish AI-generated fake videos (referred to as {\em DeepFake} videos hereafter) from real videos. Our method is based on the observations that current DeepFake algorithm can only generate images of limited resolutions, which need to be further warped to match the original faces in the source video. Such transforms leave distinctive artifacts in the resulting DeepFake videos, and we show that they can be effectively captured by convolutional neural networks (CNNs). Compared to previous methods which use a large amount of real and DeepFake generated images to train CNN classifier, our method does not need DeepFake generated images as negative training examples since we target the artifacts in affine face warping as the distinctive feature to distinguish real and fake images. The advantages of our method are two-fold: (1) Such artifacts can be simulated directly using simple image processing operations on a image to make it as negative example. Since training a DeepFake model to generate negative examples is time-consuming and resource-demanding, our method saves a plenty of time and resources in training data collection; (2) Since such artifacts are general existed in DeepFake videos from different sources, our method is more robust compared to others. Our method is evaluated on two sets of DeepFake video datasets for its effectiveness in practice.Comment: CVPRW 201

    Fighting Fake News: Image Splice Detection via Learned Self-Consistency

    Full text link
    Advances in photo editing and manipulation tools have made it significantly easier to create fake imagery. Learning to detect such manipulations, however, remains a challenging problem due to the lack of sufficient amounts of manipulated training data. In this paper, we propose a learning algorithm for detecting visual image manipulations that is trained only using a large dataset of real photographs. The algorithm uses the automatically recorded photo EXIF metadata as supervisory signal for training a model to determine whether an image is self-consistent -- that is, whether its content could have been produced by a single imaging pipeline. We apply this self-consistency model to the task of detecting and localizing image splices. The proposed method obtains state-of-the-art performance on several image forensics benchmarks, despite never seeing any manipulated images at training. That said, it is merely a step in the long quest for a truly general purpose visual forensics tool

    multi-patch aggregation models for resampling detection

    Full text link
    Images captured nowadays are of varying dimensions with smartphones and DSLR's allowing users to choose from a list of available image resolutions. It is therefore imperative for forensic algorithms such as resampling detection to scale well for images of varying dimensions. However, in our experiments, we observed that many state-of-the-art forensic algorithms are sensitive to image size and their performance quickly degenerates when operated on images of diverse dimensions despite re-training them using multiple image sizes. To handle this issue, we propose a novel pooling strategy called ITERATIVE POOLING. This pooling strategy can dynamically adjust input tensors in a discrete without much loss of information as in ROI Max-pooling. This pooling strategy can be used with any of the existing deep models and for demonstration purposes, we show its utility on Resnet-18 for the case of resampling detection a fundamental operation for any image sought of image manipulation. Compared to existing strategies and Max-pooling it gives up to 7-8% improvement on public datasets.Comment: 6 pages; 6 tables; 4 figure

    Grids and the Virtual Observatory

    Get PDF
    We consider several projects from astronomy that benefit from the Grid paradigm and associated technology, many of which involve either massive datasets or the federation of multiple datasets. We cover image computation (mosaicking, multi-wavelength images, and synoptic surveys); database computation (representation through XML, data mining, and visualization); and semantic interoperability (publishing, ontologies, directories, and service descriptions)

    High Dimensional Data Modeling Techniques for Detection of Chemical Plumes and Anomalies in Hyperspectral Images and Movies

    Full text link
    We briefly review recent progress in techniques for modeling and analyzing hyperspectral images and movies, in particular for detecting plumes of both known and unknown chemicals. For detecting chemicals of known spectrum, we extend the technique of using a single subspace for modeling the background to a "mixture of subspaces" model to tackle more complicated background. Furthermore, we use partial least squares regression on a resampled training set to boost performance. For the detection of unknown chemicals we view the problem as an anomaly detection problem, and use novel estimators with low-sampled complexity for intrinsically low-dimensional data in high-dimensions that enable us to model the "normal" spectra and detect anomalies. We apply these algorithms to benchmark data sets made available by the Automated Target Detection program co-funded by NSF, DTRA and NGA, and compare, when applicable, to current state-of-the-art algorithms, with favorable results

    Comparision and analysis of photo image forgery detection techniques

    Full text link
    Digital Photo images are everywhere, on the covers of magazines, in newspapers, in courtrooms, and all over the Internet. We are exposed to them throughout the day and most of the time. Ease with which images can be manipulated; we need to be aware that seeing does not always imply believing. We propose methodologies to identify such unbelievable photo images and succeeded to identify forged region by given only the forged image. Formats are additive tag for every file system and contents are relatively expressed with extension based on most popular digital camera uses JPEG and Other image formats like png, bmp etc. We have designed algorithm running behind with the concept of abnormal anomalies and identify the forgery regions.Comment: 12 pages, International Journal on Computational Sciences & Applications (IJCSA) Vo2, No.6, December 201

    Resampling detection of recompressed images via dual-stream convolutional neural network

    Full text link
    Resampling detection plays an important role in identifying image tampering, such as image splicing. Currently, the resampling detection is still difficult in recompressed images, which are yielded by applying resampling followed by post-JPEG compression to primary JPEG images. Except for the scenario of low quality primary compression, it remains rather challenging due to the widespread use of middle/high quality compression in imaging devices. In this paper, we propose a new convolution neural network (CNN) method to learn the resampling trace features directly from the recompressed images. To this end, a noise extraction layer based on low-order high pass filters is deployed to yield the image residual domain, which is more beneficial to extract manipulation trace features. A dual-stream CNN is presented to capture the resampling trails along different directions, where the horizontal and vertical streams are interleaved and concatenated. Lastly, the learned features are fed into Sigmoid/Softmax layer, which acts as a binary/multiple classifier for achieving the blind detection and parameter estimation of resampling, respectively. Extensive experimental results demonstrate that our proposed method could detect resampling effectively in recompressed images and outperform the state-of-the-art detectors

    Content Authentication for Neural Imaging Pipelines: End-to-end Optimization of Photo Provenance in Complex Distribution Channels

    Full text link
    Forensic analysis of digital photo provenance relies on intrinsic traces left in the photograph at the time of its acquisition. Such analysis becomes unreliable after heavy post-processing, such as down-sampling and re-compression applied upon distribution in the Web. This paper explores end-to-end optimization of the entire image acquisition and distribution workflow to facilitate reliable forensic analysis at the end of the distribution channel. We demonstrate that neural imaging pipelines can be trained to replace the internals of digital cameras, and jointly optimized for high-fidelity photo development and reliable provenance analysis. In our experiments, the proposed approach increased image manipulation detection accuracy from 45% to over 90%. The findings encourage further research towards building more reliable imaging pipelines with explicit provenance-guaranteeing properties.Comment: Camera ready + supplement, CVPR'1
    • …
    corecore