12,820 research outputs found

    Flows on Bidirected Graphs

    Full text link
    The study of nowhere-zero flows began with a key observation of Tutte that in planar graphs, nowhere-zero k-flows are dual to k-colourings (in the form of k-tensions). Tutte conjectured that every graph without a cut-edge has a nowhere-zero 5-flow. Seymour proved that every such graph has a nowhere-zero 6-flow. For a graph embedded in an orientable surface of higher genus, flows are not dual to colourings, but to local-tensions. By Seymour's theorem, every graph on an orientable surface without the obvious obstruction has a nowhere-zero 6-local-tension. Bouchet conjectured that the same should hold true on non-orientable surfaces. Equivalently, Bouchet conjectured that every bidirected graph with a nowhere-zero Z\mathbb{Z}-flow has a nowhere-zero 6-flow. Our main result establishes that every such graph has a nowhere-zero 12-flow.Comment: 24 pages, 2 figure

    Edge Roman domination on graphs

    Full text link
    An edge Roman dominating function of a graph GG is a function f ⁣:E(G){0,1,2}f\colon E(G) \rightarrow \{0,1,2\} satisfying the condition that every edge ee with f(e)=0f(e)=0 is adjacent to some edge ee' with f(e)=2f(e')=2. The edge Roman domination number of GG, denoted by γR(G)\gamma'_R(G), is the minimum weight w(f)=eE(G)f(e)w(f) = \sum_{e\in E(G)} f(e) of an edge Roman dominating function ff of GG. This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad stating that if GG is a graph of maximum degree Δ\Delta on nn vertices, then γR(G)ΔΔ+1n\gamma_R'(G) \le \lceil \frac{\Delta}{\Delta+1} n \rceil. While the counterexamples having the edge Roman domination numbers 2Δ22Δ1n\frac{2\Delta-2}{2\Delta-1} n, we prove that 2Δ22Δ1n+22Δ1\frac{2\Delta-2}{2\Delta-1} n + \frac{2}{2\Delta-1} is an upper bound for connected graphs. Furthermore, we provide an upper bound for the edge Roman domination number of kk-degenerate graphs, which generalizes results of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. We also prove a sharp upper bound for subcubic graphs. In addition, we prove that the edge Roman domination numbers of planar graphs on nn vertices is at most 67n\frac{6}{7}n, which confirms a conjecture of Akbari and Qajar. We also show an upper bound for graphs of girth at least five that is 2-cell embeddable in surfaces of small genus. Finally, we prove an upper bound for graphs that do not contain K2,3K_{2,3} as a subdivision, which generalizes a result of Akbari and Qajar on outerplanar graphs

    On Monotone Sequences of Directed Flips, Triangulations of Polyhedra, and Structural Properties of a Directed Flip Graph

    Get PDF
    This paper studied the geometric and combinatorial aspects of the classical Lawson's flip algorithm in 1972. Let A be a finite set of points in R2, omega be a height function which lifts the vertices of A into R3. Every flip in triangulations of A can be associated with a direction. We first established a relatively obvious relation between monotone sequences of directed flips between triangulations of A and triangulations of the lifted point set of A in R3. We then studied the structural properties of a directed flip graph (a poset) on the set of all triangulations of A. We proved several general properties of this poset which clearly explain when Lawson's algorithm works and why it may fail in general. We further characterised the triangulations which cause failure of Lawson's algorithm, and showed that they must contain redundant interior vertices which are not removable by directed flips. A special case if this result in 3d has been shown by B.Joe in 1989. As an application, we described a simple algorithm to triangulate a special class of 3d non-convex polyhedra. We proved sufficient conditions for the termination of this algorithm and show that it runs in O(n3) time.Comment: 40 pages, 35 figure

    Stratifying On-Shell Cluster Varieties: the Geometry of Non-Planar On-Shell Diagrams

    Get PDF
    The correspondence between on-shell diagrams in maximally supersymmetric Yang-Mills theory and cluster varieties in the Grassmannian remains largely unexplored beyond the planar limit. In this article, we describe a systematic program to survey such 'on-shell varieties', and use this to provide a complete classification in the case of G(3,6)G(3,6). In particular, we find exactly 24 top-dimensional varieties and 10 co-dimension one varieties in G(3,6)G(3,6)---up to parity and relabeling of the external legs. We use this case to illustrate some of the novelties found for non-planar varieties relative to the case of positroids, and describe some of the features that we expect to hold more generally.Comment: 35 pages, 70 figures, and 1 table; also included is a file with explicit details for our classification. Signs corrected in two residue theorems, and a new interpretation (and formula) given for the las
    corecore