2,102 research outputs found

    Design and evaluation of safety-critical applications based on inter-vehicle communication

    Get PDF
    Inter-vehicle communication has a potential to improve road traffic safety and efficiency. Technical feasibility of communication between vehicles has been extensively studied, but due to the scarcity of application-level research, communication\u27s impact on the road traffic is still unclear. This thesis addresses this uncertainty by designing and evaluating two fail-safe applications, namely, Rear-End Collision Avoidance and Virtual Traffic Lights

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    Coordination and Self-Adaptive Communication Primitives for Low-Power Wireless Networks

    Get PDF
    The Internet of Things (IoT) is a recent trend where objects are augmented with computing and communication capabilities, often via low-power wireless radios. The Internet of Things is an enabler for a connected and more sustainable modern society: smart grids are deployed to improve energy production and consumption, wireless monitoring systems allow smart factories to detect faults early and reduce waste, while connected vehicles coordinate on the road to ensure our safety and save fuel. Many recent IoT applications have stringent requirements for their wireless communication substrate: devices must cooperate and coordinate, must perform efficiently under varying and sometimes extreme environments, while strict deadlines must be met. Current distributed coordination algorithms have high overheads and are unfit to meet the requirements of today\u27s wireless applications, while current wireless protocols are often best-effort and lack the guarantees provided by well-studied coordination solutions. Further, many communication primitives available today lack the ability to adapt to dynamic environments, and are often tuned during their design phase to reach a target performance, rather than be continuously updated at runtime to adapt to reality.In this thesis, we study the problem of efficient and low-latency consensus in the context of low-power wireless networks, where communication is unreliable and nodes can fail, and we investigate the design of a self-adaptive wireless stack, where the communication substrate is able to adapt to changes to its environment. We propose three new communication primitives: Wireless Paxos brings fault-tolerant consensus to low-power wireless networking, STARC is a middleware for safe vehicular coordination at intersections, while Dimmer builds on reinforcement learning to provide adaptivity to low-power wireless networks. We evaluate in-depth each primitive on testbed deployments and we provide an open-source implementation to enable their use and improvement by the community

    Leader election and group management in vehicular ad hoc network

    Get PDF
    As automobiles become more intelligent, research on the Vehicular Ad Hoc Network (VANET) also becomes more important. Leader election is an important piece of the puzzle that can be utilized to solve many other problems in VANET. However, most existing literatures either focus on Virtual Traffic Light (VTL) application or leader election in regular ad hoc networks. In this thesis, we focus on creating a generalized algorithm for leader election in VANET and designing a group management mechanism to address various scenarios. In addition, simulations are conducted to evaluate performance of proposed algorithms

    Development and Performance Evaluation of Urban Mobility Applications and Services

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Collaborative, Intelligent, and Adaptive Systems for the Low-Power Internet of Things

    Get PDF
    With the emergence of the Internet of Things (IoT), more and more devices are getting equipped with communication capabilities, often via wireless radios. Their deployments pave the way for new and mission-critical applications: cars will communicate with nearby vehicles to coordinate at intersections; industrial wireless closed-loop systems will improve operational safety in factories; while swarms of drones will coordinate to plan collision-free trajectories. To achieve these goals, IoT devices will need to communicate, coordinate, and collaborate over the wireless medium. However, these envisioned applications necessitate new characteristics that current solutions and protocols cannot fulfill: IoT devices require consistency guarantees from their communication and demand for adaptive behavior in complex and dynamic environments.In this thesis, we design, implement, and evaluate systems and mechanisms to enable safe coordination and adaptivity for the smallest IoT devices. To ensure consistent coordination, we bring fault-tolerant consensus to low-power wireless communication and introduce Wireless Paxos, a flavor of the Paxos algorithm specifically tailored to low-power IoT. We then present STARC, a wireless coordination mechanism for intersection management combining commit semantics with synchronous transmissions. To enable adaptivity in the wireless networking stack, we introduce Dimmer and eAFH. Dimmer combines Reinforcement Learning and Multi-Armed Bandits to adapt its communication parameters and counteract the adverse effects of wireless interference at runtime while optimizing energy consumption in normal conditions. eAFH provides dynamic channel management in Bluetooth Low Energy by excluding and dynamically re-including channels in scenarios with mobility. Finally, we demonstrate with BlueSeer that a device can classify its environment, i.e., recognize whether it is located in a home, office, street, or transport, solely from received Bluetooth Low Energy signals fed into an embedded machine learning model. BlueSeer therefore increases the intelligence of the smallest IoT devices, allowing them to adapt their behaviors to their current surroundings

    A multidimensional control architecture for combined fog-to-cloud systems

    Get PDF
    The fog/edge computing concept has set the foundations for the deployment of new services leveraging resources deployed at the edge paving the way for an innovative collaborative model, where end-users may collaborate with service providers by sharing idle resources at the edge of the network. Combined Fog-to-Cloud (F2C) systems have been recently proposed as a control strategy for managing fog and cloud resources in a coordinated way, aimed at optimally allocating resources within the fog-to-cloud resources stack for an optimal service execution. In this work, we discuss the unfeasibility of the deployment of a single control topology able to optimally manage a plethora of edge devices in future networks, respecting established SLAs according to distinct service requirements and end-user profiles. Instead, a multidimensional architecture, where distinct control plane instances coexist, is then introduced. By means of distinct scenarios, we describe the benefits of the proposed architecture including how users may collaborate with the deployment of novel services by selectively sharing resources according to their profile, as well as how distinct service providers may benefit from shared resources reducing deployment costs. The novel architecture proposed in this paper opens several opportunities for research, which are presented and discussed at the final section.This work was supported by the H2020 EU mF2C project, ref. 730929 and for UPC authors, also by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under contract RTI2018-094532-B-I00.Peer ReviewedPostprint (author's final draft
    • …
    corecore