18,037 research outputs found

    Weighted Point Cloud Augmentation for Neural Network Training Data Class-Imbalance

    Get PDF
    Recent developments in the field of deep learning for 3D data have demonstrated promising potential for end-to-end learning directly from point clouds. However, many real-world point clouds contain a large class im-balance due to the natural class im-balance observed in nature. For example, a 3D scan of an urban environment will consist mostly of road and facade, whereas other objects such as poles will be under-represented. In this paper we address this issue by employing a weighted augmentation to increase classes that contain fewer points. By mitigating the class im-balance present in the data we demonstrate that a standard PointNet++ deep neural network can achieve higher performance at inference on validation data. This was observed as an increase of F1 score of 19% and 25% on two test benchmark datasets; ScanNet and Semantic3D respectively where no class im-balance pre-processing had been performed. Our networks performed better on both highly-represented and under-represented classes, which indicates that the network is learning more robust and meaningful features when the loss function is not overly exposed to only a few classes.Comment: 7 pages, 6 figures, submitted for ISPRS Geospatial Week conference 201

    Relevance of Negative Links in Graph Partitioning: A Case Study Using Votes From the European Parliament

    Get PDF
    In this paper, we want to study the informative value of negative links in signed complex networks. For this purpose, we extract and analyze a collection of signed networks representing voting sessions of the European Parliament (EP). We first process some data collected by the VoteWatch Europe Website for the whole 7 th term (2009-2014), by considering voting similarities between Members of the EP to define weighted signed links. We then apply a selection of community detection algorithms, designed to process only positive links, to these data. We also apply Parallel Iterative Local Search (Parallel ILS), an algorithm recently proposed to identify balanced partitions in signed networks. Our results show that, contrary to the conclusions of a previous study focusing on other data, the partitions detected by ignoring or considering the negative links are indeed remarkably different for these networks. The relevance of negative links for graph partitioning therefore is an open question which should be further explored.Comment: in 2nd European Network Intelligence Conference (ENIC), Sep 2015, Karlskrona, Swede
    corecore