724 research outputs found

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD

    Physiological Approach To Characterize Drowsiness In Simulated Flight Operations During Window Of Circadian Low

    Get PDF
    Drowsiness is a psycho-physiological transition from awake towards falling sleep and its detection is crucial in aviation industries. It is a common cause for pilot’s error due to unpredictable work hours, longer flight periods, circadian disruption, and insufficient sleep. The pilots’ are prone towards higher level of drowsiness during window of circadian low (2:00 am- 6:00 am). Airplanes require complex operations and lack of alertness increases accidents. Aviation accidents are much disastrous and early drowsiness detection helps to reduce such accidents. This thesis studied physiological signals during drowsiness from 18 commercially-rated pilots in flight simulator. The major aim of the study was to observe the feasibility of physiological signals to predict drowsiness. In chapter 3, the spectral behavior of electroencephalogram (EEG) was studied via power spectral density and coherence. The delta power reduced and alpha power increased significantly (

    Monitoring fatigue and drowsiness in motor vehicle occupants using electrocardiogram and heart rate - A systematic review

    Get PDF
    Introdução: A fadiga é um estado complexo que pode resultar em diminuição da vigilância, frequentemente acompanhada de sonolência. A fadiga durante a condução contribui significativamente para acidentes de trânsito em todo o mundo, destacando-se a necessidade de técnicas de monitorização eficazes. Existem várias tecnologias para aumentar a segurança do condutor e reduzir os riscos de acidentes, como sistemas de deteção de fadiga que podem alertar os condutores à medida que a sonolência se instala. Em particular, a análise dos padrões de frequência cardíaca pode oferecer informações valiosas sobre a condição fisiológica e o nível de vigilância do condutor, permitindo-lhe compreender os seus níveis de fadiga. Esta revisão tem como objetivo estabelecer o estado atual das estratégias de monitorização para ocupantes de veículos, com foco específico na avaliação da fadiga pela frequência cardíaca e variabilidade da frequência cardíaca. Métodos: Realizamos uma pesquisa sistemática da literatura nas bases de dados Web of Science, SCOPUS e Pubmed, utilizando os termos veículo, condutor, monitoração fisiológica, fadiga, sono, eletrocardiograma, frequência cardíaca e variabilidade da frequência cardíaca. Examinamos artigos publicados entre 1 de janeiro de 2018 e 31 de janeiro de 2023. Resultados: Um total de 371 artigos foram identificados, dos quais 71 foram incluídos neste estudo. Entre os artigos incluídos, 57 utilizam o eletrocardiograma (ECG) como sinal adquirido para medir a frequência cardíaca, sendo que a maioria das leituras de ECG foi obtida através de sensores de contacto (n=41), seguidos por sensores vestíveis não invasivos (n=11). Relativamente à validação, 23 artigos não mencionam qualquer tipo de validação, enquanto a maioria se baseia em avaliações subjetivas de fadiga relatadas pelos próprios participantes (n=27) e avaliações feitas por observadores com base em vídeos (n=11). Dos artigos incluídos, apenas 14 englobam um sistema de estimativa de fadiga e sonolência. Alguns relatam um desempenho satisfatórios, no entanto, o tamanho reduzido da amostra limita a abrangência de quaisquer conclusões. Conclusão: Esta revisão destaca o potencial da análise da frequência cardíaca e da instrumentação não invasiva para a monitorização contínua do estado do condutor e deteção de sonolência. Uma das principais questões é a falta de métodos suficientes de validação e estimativa para a fadiga, o que contribui para a insuficiência dos métodos na criação de sistemas de alarme proativos. Esta área apresenta grandes perspetivas, mas ainda está longe de ser implementada de forma fiável.Background: Fatigue is a complex state that can result in decreased alertness, often accompanied by drowsiness. Driving fatigue has become a significant contributor to traffic accidents globally, highlighting the need for effective monitoring techniques. Various technologies exist to enhance driver safety and minimize accident risks, such as fatigue detection systems that can alert drivers as drowsiness sets in. In particular, measuring heart rate patterns may offer valuable insights into the occupant's physiological condition and level of alertness, and may allow them to understand their fatigue levels. This review aims to establish the current state of the art of monitoring strategies for vehicle occupants, specifically focusing on fatigue assessed by heart rate and heart rate variability. Methods: We performed a systematic literature search in the databases of Web Of Science, SCOPUS and Pubmed, using the terms vehicle, driver, physiologic monitoring, fatigue, sleep, electrocardiogram, heart rate and heart rate variability. We examine articles published between 1st of january 2018 and 31st of January 2023. Results: A total of 371 papers were identified from which 71 articles were included in this study. Among the included papers, 57 utilized electrocardiogram (ECG) as the acquired signal for heart rate (HR) measures, with most ECG readings obtained through contact sensors (n=41), followed by non-intrusive wearable sensors (n=11). Regarding validation, 23 papers do not report validation, while the majority rely on subjective self-reported fatigue ratings (n=27) and video-based observer ratings(n=11). From the included papers, only 14 comprise a fatigue and drowsiness estimation system. Some report acceptable performances, but reduced sample size limits the reach of any conclusions. Conclusions: This review highlights the potential of HR analysis and non-intrusive instrumentation for continuous monitoring of driver's status and detecting sleepiness. One major issue is the lack of sufficient validation and estimation methods for fatigue, contributing to the insufficiency of methods in providing proactive alarm systems. This area shows great promise but is still far from being reliably implemented

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Detecting driver fatigue using heart rate variability: A systematic review

    Get PDF
    Driver fatigue detection systems have potential to improve road safety by preventing crashes and saving lives. Conventional driver monitoring systems based on driving performance and facial features may be challenged by the application of automated driving systems. This limitation could potentially be overcome by monitoring systems based on physiological measurements. Heart rate variability (HRV) is a physiological marker of interest for detecting driver fatigue that can be measured during real life driving. This systematic review investigates the relationship between HRV measures and driver fatigue, as well as the performance of HRV based fatigue detection systems. With the applied eligibility criteria, 18 articles were identified in this review. Inconsistent results can be found within the studies that investigated differences of HRV measures between alert and fatigued drivers. For studies that developed HRV based fatigue detection systems, the detection performance showed a large variation, where the detection accuracy ranged from 44% to 100%. The inconsistency and variation of the results can be caused by differences in several key aspects in the study designs. Progress in this field is needed to determine the relationship between HRV and different fatigue causal factors and its connection to driver performance. To be deployed, HRV-based fatigue detection systems need to be thoroughly tested in real life conditions with good coverage of relevant driving scenarios and a sufficient number of participants

    Drowsiness Classification for Internal Driving Situation Awareness on Mobile Platform

    Get PDF
    the sleeping driver is potentially more likely to cause an accident than the person who speeds up since the driver is the victim of sleepiness. Automobile industry researchers, including manufacturers, seek to solve this issue with various technical solutions that can avoid such a situation. This paper proposes an implementation of a lightweight method to detect driver's sleepiness using facial landmarks and head pose estimation based on neural network methodologies on a mobile device. We try to improve the accurateness by using face images that the camera detects and passes to CNN to identify sleepiness. Firstly, applied a behavioral landmark's sleepiness detection process. Then, an integrated Head Pose Estimation technique will strengthen the system's reliability. The preliminary findings of the tests demonstrate that with real-time capability, more than 86% identification accuracy can be reached in several real-world scenarios for all classes, including with glasses, without glasses, and light-dark background. This work aims to classify drowsiness, warn, and inform drivers, helping them to stop falling asleep at the wheel. The integrated CNN-based method is used to create a high accuracy and simple-to-use real-time driver drowsiness monitoring framework for embedded devices and Android phone

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others
    • …
    corecore