852 research outputs found

    Generalized solutions and distributional shadows for Dirac equations

    Full text link
    We discuss the application of recent results on generalized solutions to the Cauchy problem for hyperbolic systems to Dirac equations with external fields. In further analysis we focus on the question of existence of associated distributional limits and derive their explicit form in case of free Dirac fields with regularizations of initial values corresponding to point-like probability densities

    Temperature in Fermion Systems and the Chiral Fermion Determinant

    Get PDF
    We give an interpretation to the issue of the chiral determinant in the heat-kernel approach. The extra dimension (5-th dimension) is interpreted as (inverse) temperature. The 1+4 dim Dirac equation is naturally derived by the Wick rotation for the temperature. In order to define a ``good'' temperature, we choose those solutions of the Dirac equation which propagate in a fixed direction in the extra coordinate. This choice fixes the regularization of the fermion determinant. The 1+4 dimensional Dirac mass (MM) is naturally introduced and the relation: |4 dim electron momentum| \ll M|M| \ll ultraviolet cut-off, naturally appears. The chiral anomaly is explicitly derived for the 2 dim Abelian model. Typically two different regularizations appear depending on the choice of propagators. One corresponds to the chiral theory, the other to the non-chiral (hermitian) theory.Comment: 24 pages, some figures, to be published in Phys.Rev.

    Local spinfoam expansion in loop quantum cosmology

    Full text link
    The quantum dynamics of the flat Friedmann-Lemaitre-Robertson-Walker and Bianchi I models defined by loop quantum cosmology have recently been translated into a spinfoam-like formalism. The construction is facilitated by the presence of a massless scalar field which is used as an internal clock. The implicit integration over the matter variable leads to a nonlocal spinfoam amplitude. In this paper we consider a vacuum Bianchi I universe and show that by choosing an appropriate regulator a spinfoam expansion can be obtained without selecting a clock variable and that the resulting spinfoam amplitude is local.Comment: 12 page

    Distributional approach to point interactions in one-dimensional quantum mechanics

    Get PDF
    We consider the one-dimensional quantum mechanical problem of defining interactions concentrated at a single point in the framework of the theory of distributions. The often ill-defined product which describes the interaction term in the Schr\"odinger and Dirac equations is replaced by a well-defined distribution satisfying some simple mathematical conditions and, in addition, the physical requirement of probability current conservation is imposed. A four-parameter family of interactions thus emerges as the most general point interaction both in the non-relativistic and in the relativistic theories (in agreement with results obtained by self-adjoint extensions). Since the interaction is given explicitly, the distributional method allows one to carry out symmetry investigations in a simple way, and it proves to be useful to clarify some ambiguities related to the so-called δ\delta^\prime interaction.Comment: Open Access link: http://journal.frontiersin.org/Journal/10.3389/fphy.2014.00023/abstrac
    corecore