168 research outputs found

    Public Health Rep

    Get PDF
    13972810PMCnul

    Visuomotor performance at high altitude in COPD patients. Randomized placebo-controlled trial of acetazolamide

    Full text link
    Introduction: We evaluated whether exposure to high altitude impairs visuomotor learning in lowlanders with chronic obstructive pulmonary disease (COPD) and whether this can be prevented by acetazolamide treatment.Methods: 45 patients with COPD, living <800 m, FEV1 ≥40 to <80%predicted, were randomized to acetazolamide (375 mg/d) or placebo, administered 24h before and during a 2-day stay in a clinic at 3100 m. Visuomotor performance was evaluated with a validated, computer-assisted test (Motor-Task-Manager) at 760 m above sea level (baseline, before starting the study drug), within 4h after arrival at 3100 m and in the morning after one night at 3100 m. Main outcome was the directional error (DE) of cursor movements controlled by the participant via mouse on a computer screen during a target tracking task. Effects of high altitude and acetazolamide on DE during an adaptation phase, immediate recall and post-sleep recall were evaluated by regression analyses. www.ClinicalTrials.gov NCT03165890.Results: In 22 patients receiving placebo, DE at 3100 m increased during adaptation by mean 2.5°, 95%CI 2.2° to 2.7° (p < 0.001), during immediate recall by 5.3°, 4.6° to 6.1° (p < 0.001), and post-sleep recall by 5.8°, 5.0 to 6.7° (p < 0.001), vs. corresponding values at 760 m. In 23 participants receiving acetazolamide, corresponding DE were reduced by −0.3° (−0.6° to 0.1°, p = 0.120), −2.7° (−3.7° to −1.6°, p < 0.001) and −3.1° (−4.3° to −2.0°, p < 0.001), compared to placebo at 3100 m.Conclusion: Lowlanders with COPD travelling to 3100 m experienced altitude-induced impairments in immediate and post-sleep recall of a visuomotor task. Preventive acetazolamide treatment mitigated these undesirable effects

    Sevoflurane, Propofol and Carvedilol Block Myocardial Protection by Limb Remote Ischemic Preconditioning

    Get PDF
    The effects of remote ischemic preconditioning (RIPC) in cardiac surgery have been inconsistent. We investigated whether anesthesia or beta-blockers interfere with RIPC cardioprotection. Fifty patients undergoing cardiac surgery were randomized to receive limb RIPC (four cycles of 5-min of upper arm cuff inflation/deflation) in the awake state (no-anesthesia; n = 17), or under sevoflurane (n = 17) or propofol (n = 16) anesthesia. In a separate crossover study, 11 healthy volunteers received either carvedilol or no medication prior to RIPC. Plasma dialysates were obtained and perfused through an isolated male Sprague⁻Dawley rat heart subjected to 30-min ischemia/60-min reperfusion, following which myocardial infarct (MI) size was determined. In the cardiac surgery study, pre-RIPC MI sizes were similar among the groups (39.7 ± 4.5% no-anesthesia, 38.9 ± 5.3% sevoflurane, and 38.6 ± 3.6% propofol). However, post-RIPC MI size was reduced in the no-anesthesia group (27.5 ± 8.0%; p < 0.001), but not in the anesthesia groups (35.7 ± 6.9% sevoflurane and 35.8 ± 5.8% propofol). In the healthy volunteer study, there was a reduction in MI size with RIPC in the no-carvedilol group (41.7 ± 4.3% to 30.6 ± 8.5%; p < 0.0001), but not in the carvedilol group (41.0 ± 4.0% to 39.6 ± 5.6%; p = 0.452). We found that the cardioprotective effects of limb RIPC were abolished under propofol or sevoflurane anesthesia and in the presence of carvedilol therapy
    corecore