246 research outputs found

    Reduced-order state estimation for linear time-varying systems

    Full text link
    We consider reduced-order and subspace state estimators for linear discrete-time systems with possibly time-varying dynamics. The reduced-order and subspace estimators are obtained using a finite-horizon minimization approach, and thus do not require the solution of algebraic Lyapunov or Riccati equations. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control SocietyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64446/1/141_ftp.pd

    Package-X: A Mathematica package for the analytic calculation of one-loop integrals

    Full text link
    Package-X, a Mathematica package for the analytic computation of one-loop integrals dimensionally regulated near 4 spacetime dimensions is described. Package-X computes arbitrarily high rank tensor integrals with up to three propagators, and gives compact expressions of UV divergent, IR divergent, and finite parts for any kinematic configuration involving real-valued external invariants and internal masses. Output expressions can be readily evaluated numerically and manipulated symbolically with built-in Mathematica functions. Emphasis is on evaluation speed, on readability of results, and especially on user-friendliness. Also included is a routine to compute traces of products of Dirac matrices, and a collection of projectors to facilitate the computation of fermion form factors at one-loop. The package is intended to be used both as a research tool and as an educational tool.Comment: Package files are available at http://packagex.hepforge.or

    From cardinal spline wavelet bases to highly coherent dictionaries

    Get PDF
    Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation

    Subspace modelling for structured noise suppression

    Get PDF
    The problem of structured noise suppression is addressed by i)modelling the subspaces hosting the components of the signal conveying the information and ii)applying a nonlin- ear non-extensive technique for effecting the right separation. Although the approach is applicable to all situations satisfying the hypothesis of the proposed framework, this work is motivated by a particular scenario, namely, the cancellation of low frequency noise in broadband seismic signals

    High-Quality Image Resizing Using Oblique Projection Operators

    Get PDF
    The standard interpolation approach to image resizing is to fit the original picture with a continuous model and resample the function at the desired rate. However, one can obtain more accurate results if one applies a filter prior to sampling, a fact well known from sampling theory. The optimal solution corresponds to an orthogonal projection onto the underlying continuous signal space. Unfortunately, the optimal projection prefilter is difficult to implement when sinc or high order spline functions are used. In this paper, we propose to resize the image using an oblique rather than an orthogonal projection operator in order to make use of faster, simpler, and more general algorithms. We show that we can achieve almost the same result as with the orthogonal projection provided that we use the same approximation space. The main advantage is that it becomes perfectly feasible to use higher order models (e.g., splines of degree n ≥ 3). We develop the theoretical background and present a simple and practical implementation procedure using B-splines. Our experiments show that the proposed algorithm consistently outperforms the standard interpolation methods and that it provides essentially the same performance as the optimal procedure (least squares solution) with considerably fewer computations. The method works for arbitrary scaling factors and is applicable to both image enlargement and reduction
    • …
    corecore