1,001,941 research outputs found

    On graph equivalences preserved under extensions

    Get PDF
    Let R be an equivalence relation on graphs. By the strengthening of R we mean the relation R' such that graphs G and H are in the relation R' if for every graph F, the union of the graphs G and F is in the relation R with the union of the graphs H and F. We study strengthenings of equivalence relations on graphs. The most important case that we consider concerns equivalence relations defined by graph properties. We obtain results on the strengthening of equivalence relations determined by the properties such as being a k-connected graph, k-colorable, hamiltonian and planar

    On graphs with representation number 3

    Get PDF
    A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if (x,y)(x,y) is an edge in EE. A graph is word-representable if and only if it is kk-word-representable for some kk, that is, if there exists a word containing kk copies of each letter that represents the graph. Also, being kk-word-representable implies being (k+1)(k+1)-word-representable. The minimum kk such that a word-representable graph is kk-word-representable, is called graph's representation number. Graphs with representation number 1 are complete graphs, while graphs with representation number 2 are circle graphs. The only fact known before this paper on the class of graphs with representation number 3, denoted by R3\mathcal{R}_3, is that the Petersen graph and triangular prism belong to this class. In this paper, we show that any prism belongs to R3\mathcal{R}_3, and that two particular operations of extending graphs preserve the property of being in R3\mathcal{R}_3. Further, we show that R3\mathcal{R}_3 is not included in a class of cc-colorable graphs for a constant cc. To this end, we extend three known results related to operations on graphs. We also show that ladder graphs used in the study of prisms are 22-word-representable, and thus each ladder graph is a circle graph. Finally, we discuss kk-word-representing comparability graphs via consideration of crown graphs, where we state some problems for further research

    Parameterized Algorithms on Perfect Graphs for deletion to (r,â„“)(r,\ell)-graphs

    Get PDF
    For fixed integers r,ℓ≥0r,\ell \geq 0, a graph GG is called an {\em (r,ℓ)(r,\ell)-graph} if the vertex set V(G)V(G) can be partitioned into rr independent sets and ℓ\ell cliques. The class of (r,ℓ)(r, \ell) graphs generalizes rr-colourable graphs (when ℓ=0)\ell =0) and hence not surprisingly, determining whether a given graph is an (r,ℓ)(r, \ell)-graph is \NP-hard even when r≥3r \geq 3 or ℓ≥3\ell \geq 3 in general graphs. When rr and ℓ\ell are part of the input, then the recognition problem is NP-hard even if the input graph is a perfect graph (where the {\sc Chromatic Number} problem is solvable in polynomial time). It is also known to be fixed-parameter tractable (FPT) on perfect graphs when parameterized by rr and ℓ\ell. I.e. there is an f(r+\ell) \cdot n^{\Oh(1)} algorithm on perfect graphs on nn vertices where ff is some (exponential) function of rr and ℓ\ell. In this paper, we consider the parameterized complexity of the following problem, which we call {\sc Vertex Partization}. Given a perfect graph GG and positive integers r,ℓ,kr,\ell,k decide whether there exists a set S⊆V(G)S\subseteq V(G) of size at most kk such that the deletion of SS from GG results in an (r,ℓ)(r,\ell)-graph. We obtain the following results: \begin{enumerate} \item {\sc Vertex Partization} on perfect graphs is FPT when parameterized by k+r+ℓk+r+\ell. \item The problem does not admit any polynomial sized kernel when parameterized by k+r+ℓk+r+\ell. In other words, in polynomial time, the input graph can not be compressed to an equivalent instance of size polynomial in k+r+ℓk+r+\ell. In fact, our result holds even when k=0k=0. \item When r,ℓr,\ell are universal constants, then {\sc Vertex Partization} on perfect graphs, parameterized by kk, has a polynomial sized kernel. \end{enumerate

    On Coloring Resilient Graphs

    Full text link
    We introduce a new notion of resilience for constraint satisfaction problems, with the goal of more precisely determining the boundary between NP-hardness and the existence of efficient algorithms for resilient instances. In particular, we study rr-resiliently kk-colorable graphs, which are those kk-colorable graphs that remain kk-colorable even after the addition of any rr new edges. We prove lower bounds on the NP-hardness of coloring resiliently colorable graphs, and provide an algorithm that colors sufficiently resilient graphs. We also analyze the corresponding notion of resilience for kk-SAT. This notion of resilience suggests an array of open questions for graph coloring and other combinatorial problems.Comment: Appearing in MFCS 201
    • …
    corecore