10,995 research outputs found

    Efficient Multi - Keyword Ranked Search over Encrypted Cloud Computing

    Get PDF
    Cloud computing allow customer to store their data on remote site so it reduce burden on local complex data storing. But before storing sensitive data it can encrypted and this can overcome plaintext keyword search.AS large number of user and data on cloud and for search on that data allow multi keyword search also provide result similarity ranking for effective retrieval of data. From number of multi-keyword semantics to identify similarity between search query and data highly efficient rule of coordinate matching, i.e., as many matches as possible, and then use inner data similarity for quantitatively similarity measure. In this system, we define and solve the challenging problem of privacy-preserving multi-keyword ranked search over encrypted cloud data (MRSE),and establish a set of strict privacy requirements for such a secure cloud data utilization system to be implemented in real. We first propose basic idea of different privacy preserving multi-keyword search technique along with search on data that store on cloud in encrypted form and maintaining the integrity of rank order in search result and the cloud server is untrusted. .By hiding the user’s identity, the confidentiality of user’s data is maintaine

    HardIDX: Practical and Secure Index with SGX

    Full text link
    Software-based approaches for search over encrypted data are still either challenged by lack of proper, low-leakage encryption or slow performance. Existing hardware-based approaches do not scale well due to hardware limitations and software designs that are not specifically tailored to the hardware architecture, and are rarely well analyzed for their security (e.g., the impact of side channels). Additionally, existing hardware-based solutions often have a large code footprint in the trusted environment susceptible to software compromises. In this paper we present HardIDX: a hardware-based approach, leveraging Intel's SGX, for search over encrypted data. It implements only the security critical core, i.e., the search functionality, in the trusted environment and resorts to untrusted software for the remainder. HardIDX is deployable as a highly performant encrypted database index: it is logarithmic in the size of the index and searches are performed within a few milliseconds rather than seconds. We formally model and prove the security of our scheme showing that its leakage is equivalent to the best known searchable encryption schemes. Our implementation has a very small code and memory footprint yet still scales to virtually unlimited search index sizes, i.e., size is limited only by the general - non-secure - hardware resources

    Secure Hop-by-Hop Aggregation of End-to-End Concealed Data in Wireless Sensor Networks

    Full text link
    In-network data aggregation is an essential technique in mission critical wireless sensor networks (WSNs) for achieving effective transmission and hence better power conservation. Common security protocols for aggregated WSNs are either hop-by-hop or end-to-end, each of which has its own encryption schemes considering different security primitives. End-to-end encrypted data aggregation protocols introduce maximum data secrecy with in-efficient data aggregation and more vulnerability to active attacks, while hop-by-hop data aggregation protocols introduce maximum data integrity with efficient data aggregation and more vulnerability to passive attacks. In this paper, we propose a secure aggregation protocol for aggregated WSNs deployed in hostile environments in which dual attack modes are present. Our proposed protocol is a blend of flexible data aggregation as in hop-by-hop protocols and optimal data confidentiality as in end-to-end protocols. Our protocol introduces an efficient O(1) heuristic for checking data integrity along with cost-effective heuristic-based divide and conquer attestation process which is O(lnn)O(\ln{n}) in average -O(n) in the worst scenario- for further verification of aggregated results

    A secure data outsourcing scheme based on Asmuth – Bloom secret sharing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Data outsourcing is an emerging paradigm for data management in which a database is provided as a service by third-party service providers. One of the major benefits of offering database as a service is to provide organisations, which are unable to purchase expensive hardware and software to host their databases, with efficient data storage accessible online at a cheap rate. Despite that, several issues of data confidentiality, integrity, availability and efficient indexing of users’ queries at the server side have to be addressed in the data outsourcing paradigm. Service providers have to guarantee that their clients’ data are secured against internal (insider) and external attacks. This paper briefly analyses the existing indexing schemes in data outsourcing and highlights their advantages and disadvantages. Then, this paper proposes a secure data outsourcing scheme based on Asmuth–Bloom secret sharing which tries to address the issues in data outsourcing such as data confidentiality, availability and order preservation for efficient indexing

    Equivalence-based Security for Querying Encrypted Databases: Theory and Application to Privacy Policy Audits

    Full text link
    Motivated by the problem of simultaneously preserving confidentiality and usability of data outsourced to third-party clouds, we present two different database encryption schemes that largely hide data but reveal enough information to support a wide-range of relational queries. We provide a security definition for database encryption that captures confidentiality based on a notion of equivalence of databases from the adversary's perspective. As a specific application, we adapt an existing algorithm for finding violations of privacy policies to run on logs encrypted under our schemes and observe low to moderate overheads.Comment: CCS 2015 paper technical report, in progres
    corecore