6,784 research outputs found

    On the classical capacity of quantum Gaussian channels

    Full text link
    The set of quantum Gaussian channels acting on one bosonic mode can be classified according to the action of the group of Gaussian unitaries. We look for bounds on the classical capacity for channels belonging to such a classification. Lower bounds can be efficiently calculated by restricting to Gaussian encodings, for which we provide analytical expressions.Comment: 10 pages, IOP style. v2: minor corrections, close to the published versio

    A Resource Framework for Quantum Shannon Theory

    Full text link
    Quantum Shannon theory is loosely defined as a collection of coding theorems, such as classical and quantum source compression, noisy channel coding theorems, entanglement distillation, etc., which characterize asymptotic properties of quantum and classical channels and states. In this paper we advocate a unified approach to an important class of problems in quantum Shannon theory, consisting of those that are bipartite, unidirectional and memoryless. We formalize two principles that have long been tacitly understood. First, we describe how the Church of the larger Hilbert space allows us to move flexibly between states, channels, ensembles and their purifications. Second, we introduce finite and asymptotic (quantum) information processing resources as the basic objects of quantum Shannon theory and recast the protocols used in direct coding theorems as inequalities between resources. We develop the rules of a resource calculus which allows us to manipulate and combine resource inequalities. This framework simplifies many coding theorem proofs and provides structural insights into the logical dependencies among coding theorems. We review the above-mentioned basic coding results and show how a subset of them can be unified into a family of related resource inequalities. Finally, we use this family to find optimal trade-off curves for all protocols involving one noisy quantum resource and two noiseless ones.Comment: 60 page

    Upper bound on the secret key rate distillable from effective quantum correlations with imperfect detectors

    Full text link
    We provide a simple method to obtain an upper bound on the secret key rate that is particularly suited to analyze practical realizations of quantum key distribution protocols with imperfect devices. We consider the so-called trusted device scenario where Eve cannot modify the actual detection devices employed by Alice and Bob. The upper bound obtained is based on the available measurements results, but it includes the effect of the noise and losses present in the detectors of the legitimate users.Comment: 9 pages, 1 figure; suppress sifting effect in the figure, final versio
    corecore