1,756 research outputs found

    On the Quantum Complexity of Closest Pair and Related Problems

    Get PDF
    The closest pair problem is a fundamental problem of computational geometry: given a set of nn points in a dd-dimensional space, find a pair with the smallest distance. A classical algorithm taught in introductory courses solves this problem in O(nlogn)O(n\log n) time in constant dimensions (i.e., when d=O(1)d=O(1)). This paper asks and answers the question of the problem's quantum time complexity. Specifically, we give an O~(n2/3)\tilde{O}(n^{2/3}) algorithm in constant dimensions, which is optimal up to a polylogarithmic factor by the lower bound on the quantum query complexity of element distinctness. The key to our algorithm is an efficient history-independent data structure that supports quantum interference. In polylog(n)\mathrm{polylog}(n) dimensions, no known quantum algorithms perform better than brute force search, with a quadratic speedup provided by Grover's algorithm. To give evidence that the quadratic speedup is nearly optimal, we initiate the study of quantum fine-grained complexity and introduce the Quantum Strong Exponential Time Hypothesis (QSETH), which is based on the assumption that Grover's algorithm is optimal for CNF-SAT when the clause width is large. We show that the na\"{i}ve Grover approach to closest pair in higher dimensions is optimal up to an no(1)n^{o(1)} factor unless QSETH is false. We also study the bichromatic closest pair problem and the orthogonal vectors problem, with broadly similar results.Comment: 46 pages, 3 figures, presentation improve

    The classical-quantum boundary for correlations: discord and related measures

    Full text link
    One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are amongst the more actively-studied topics of quantum information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here we review different notions of classical and quantum correlations quantified by quantum discord and other related measures. In the first half, we review the mathematical properties of the measures of quantum correlations, relate them to each other, and discuss the classical-quantum division that is common among them. In the second half, we show that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. We show that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.Comment: Close to the published versio
    corecore