25,259 research outputs found

    Positive Forms and Stability of Linear Time-Delay Systems

    Full text link
    We consider the problem of constructing Lyapunov functions for linear differential equations with delays. For such systems it is known that exponential stability implies the existence of a positive Lyapunov function which is quadratic on the space of continuous functions. We give an explicit parametrization of a sequence of finite-dimensional subsets of the cone of positive Lyapunov functions using positive semidefinite matrices. This allows stability analysis of linear time-delay systems to be formulated as a semidefinite program.Comment: journal version, 14 page

    Piecewise Linear Control Systems

    Get PDF
    This thesis treats analysis and design of piecewise linear control systems. Piecewise linear systems capture many of the most common nonlinearities in engineering systems, and they can also be used for approximation of other nonlinear systems. Several aspects of linear systems with quadratic constraints are generalized to piecewise linear systems with piecewise quadratic constraints. It is shown how uncertainty models for linear systems can be extended to piecewise linear systems, and how these extensions give insight into the classical trade-offs between fidelity and complexity of a model. Stability of piecewise linear systems is investigated using piecewise quadratic Lyapunov functions. Piecewise quadratic Lyapunov functions are much more powerful than the commonly used quadratic Lyapunov functions. It is shown how piecewise quadratic Lyapunov functions can be computed via convex optimization in terms of linear matrix inequalities. The computations are based on a compact parameterization of continuous piecewise quadratic functions and conditional analysis using the S-procedure. A unifying framework for computation of a variety of Lyapunov functions via convex optimization is established based on this parameterization. Systems with attractive sliding modes and systems with bounded regions of attraction are also treated. Dissipativity analysis and optimal control problems with piecewise quadratic cost functions are solved via convex optimization. The basic results are extended to fuzzy systems, hybrid systems and smooth nonlinear systems. It is shown how Lyapunov functions with a discontinuous dependence on the discrete state can be computed via convex optimization. An automated procedure for increasing the flexibility of the Lyapunov function candidate is suggested based on linear programming duality. A Matlab toolbox that implements several of the results derived in the thesis is presented

    A General Class of Throughput Optimal Routing Policies in Multi-hop Wireless Networks

    Full text link
    This paper considers the problem of throughput optimal routing/scheduling in a multi-hop constrained queueing network with random connectivity whose special case includes opportunistic multi-hop wireless networks and input-queued switch fabrics. The main challenge in the design of throughput optimal routing policies is closely related to identifying appropriate and universal Lyapunov functions with negative expected drift. The few well-known throughput optimal policies in the literature are constructed using simple quadratic or exponential Lyapunov functions of the queue backlogs and as such they seek to balance the queue backlogs across network independent of the topology. By considering a class of continuous, differentiable, and piece-wise quadratic Lyapunov functions, this paper provides a large class of throughput optimal routing policies. The proposed class of Lyapunov functions allow for the routing policy to control the traffic along short paths for a large portion of state-space while ensuring a negative expected drift. This structure enables the design of a large class of routing policies. In particular, and in addition to recovering the throughput optimality of the well known backpressure routing policy, an opportunistic routing policy with congestion diversity is proved to be throughput optimal.Comment: 31 pages (one column), 8 figures, (revision submitted to IEEE Transactions on Information Theory
    • …
    corecore