583 research outputs found

    Ring Learning With Errors: A crossroads between postquantum cryptography, machine learning and number theory

    Get PDF
    The present survey reports on the state of the art of the different cryptographic functionalities built upon the ring learning with errors problem and its interplay with several classical problems in algebraic number theory. The survey is based to a certain extent on an invited course given by the author at the Basque Center for Applied Mathematics in September 2018.Comment: arXiv admin note: text overlap with arXiv:1508.01375 by other authors/ comment of the author: quotation has been added to Theorem 5.

    Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models

    Get PDF
    This chapter gives a survey on the use of statistical designs for what-if analysis in simula- tion, including sensitivity analysis, optimization, and validation/verification. Sensitivity analysis is divided into two phases. The first phase is a pilot stage, which consists of screening or searching for the important factors among (say) hundreds of potentially important factors. A novel screening technique is presented, namely sequential bifurcation. The second phase uses regression analysis to approximate the input/output transformation that is implied by the simulation model; the resulting regression model is also known as a metamodel or a response surface. Regression analysis gives better results when the simu- lation experiment is well designed, using either classical statistical designs (such as frac- tional factorials) or optimal designs (such as pioneered by Fedorov, Kiefer, and Wolfo- witz). To optimize the simulated system, the analysts may apply Response Surface Metho- dology (RSM); RSM combines regression analysis, statistical designs, and steepest-ascent hill-climbing. To validate a simulation model, again regression analysis and statistical designs may be applied. Several numerical examples and case-studies illustrate how statisti- cal techniques can reduce the ad hoc character of simulation; that is, these statistical techniques can make simulation studies give more general results, in less time. Appendix 1 summarizes confidence intervals for expected values, proportions, and quantiles, in termi- nating and steady-state simulations. Appendix 2 gives details on four variance reduction techniques, namely common pseudorandom numbers, antithetic numbers, control variates or regression sampling, and importance sampling. Appendix 3 describes jackknifing, which may give robust confidence intervals.least squares;distribution-free;non-parametric;stopping rule;run-length;Von Neumann;median;seed;likelihood ratio

    On the Degree Growth in Some Polynomial Dynamical Systems and Nonlinear Pseudorandom Number Generators

    Full text link
    In this paper we study a class of dynamical systems generated by iterations of multivariate polynomials and estimate the degreegrowth of these iterations. We use these estimates to bound exponential sums along the orbits of these dynamical systems and show that they admit much stronger estimates than in the general case and thus can be of use for pseudorandom number generation.Comment: Mathematics of Computation (to appear
    • …
    corecore