53 research outputs found

    Algorithms for Optimal Control with Fixed-Rate Feedback

    Get PDF
    We consider a discrete-time linear quadratic Gaussian networked control setting where the (full information) observer and controller are separated by a fixed-rate noiseless channel. The minimal rate required to stabilize such a system has been well studied. However, for a given fixed rate, how to quantize the states so as to optimize performance is an open question of great theoretical and practical significance. We concentrate on minimizing the control cost for first-order scalar systems. To that end, we use the Lloyd-Max algorithm and leverage properties of logarithmically-concave functions and sequential Bayesian filtering to construct the optimal quantizer that greedily minimizes the cost at every time instant. By connecting the globally optimal scheme to the problem of scalar successive refinement, we argue that its gain over the proposed greedy algorithm is negligible. This is significant since the globally optimal scheme is often computationally intractable. All the results are proven for the more general case of disturbances with logarithmically-concave distributions and rate-limited time-varying noiseless channels. We further extend the framework to event-triggered control by allowing to convey information via an additional "silent symbol", i.e., by avoiding transmitting bits; by constraining the minimal probability of silence we attain a tradeoff between the transmission rate and the control cost for rates below one bit per sample

    Optimal Filter Banks for Multiple Description Coding: Analysis and Synthesis

    Get PDF
    Multiple description (MD) coding is a source coding technique for information transmission over unreliable networks. In MD coding, the coder generates several different descriptions of the same signal and the decoder can produce a useful reconstruction of the source with any received subset of these descriptions. In this paper, we study the problem of MD coding of stationary Gaussian sources with memory. First, we compute an approximate MD rate distortion region for these sources, which we prove to be asymptotically tight at high rates. This region generalizes the MD rate distortion region of El Gamal and Cover (1982), and Ozarow (1980) for memoryless Gaussian sources. Then, we develop an algorithm for the design of optimal two-channel biorthogonal filter banks for MD coding of Gaussian sources. We show that optimal filters are obtained by allocating the redundancy over frequency with a reverse "water-filling" strategy. Finally, we present experimental results which show the effectiveness of our filter banks in the low complexity, low rate regim

    Centralized and partial decentralized design for the Fog Radio Access Network

    Get PDF
    Fog Radio Access Network (F-RAN) has been shown to be a promising network architecture for the 5G network. With F-RAN, certain amount of signal processing functionalities are pushed from the Base Station (BS) on the network edge to the BaseBand Units (BBU) pool located remotely in the cloud. Hence, partially centralized network operation and management can be achieved, which can greatly improve the energy and spectral efficiency of the network, in order to meet the requirements of 5G. In this work, the optimal design for both uplink and downlink of F-RAN are intensively investigated

    Information theoretic approach to quantization and classification for signal processing, communications, and machine learning applications

    Get PDF
    There are five main contributions of this dissertation. The first contribution is new closed-form expressions for channel capacity of a new class of channel matrices. The second contribution is the discovery of the structure for optimal binary quantizer and the associated methods for finding an optimal quantizer that maximizes mutual information between the input and output for a given input distribution. The third contribution is the discovery of the structure for an optimal KK-ary quantizer that maximizes the mutual information subject to an arbitrary constraint on the output distribution. The fourth contribution is the joint design of an optimal quantizer that maximizes the mutual information over both the input distribution and the quantization parameters for an arbitrary binary noisy channel with a given noise density. The last contribution is the development and analysis of novel efficient classification algorithms for finding the minimum impurity partition using mutual information as the metric

    A Deterministic Annealing Framework for Global Optimization of Delay-Constrained Communication and Control Strategies

    Get PDF
    This dissertation is concerned with the problem of global optimization of delay constrained communication and control strategies. Specifically, the objective is to obtain optimal encoder and decoder functions that map between the source space and the channel space, to minimize a given cost functional. The cost surfaces associated with these problems are highly complex and riddled with local minima, rendering gradient descent based methods ineffective. This thesis proposes and develops a powerful non-convex optimization method based on the concept of deterministic annealing (DA) - which is derived from information theoretic principles with analogies to statistical physics, and was successfully employed in several problems including vector quantization, classification and regression. DA has several useful properties including reduced sensitivity to initialization and strong potential to avoid poor local minima. DA-based optimization methods are developed here for the following fundamental communication problems: the Wyner-Ziv setting where only a decoder has access to side information, the distributed setting where independent encoders transmit over independent channels to a central decoder, and analog multiple descriptions setting which is an extension of the well known source coding problem of multiple descriptions. Comparative numerical results are presented, which show strict superiority of the proposed method over gradient descent based optimization methods as well as prior approaches in literature. Detailed analysis of the highly non-trivial structure of obtained mappings is provided. The thesis further studies the related problem of global optimization of controller mappings in decentralized stochastic control problems, including Witsenhausen's celebrated 1968 counter-example. It is well-known that most decentralized control problems do not admit closed-form solutions and require numerical optimization. An optimization method is developed, based on DA, for a class of decentralized stochastic control problems. Comparative numerical results are presented for two test problems that show strict superiority of the proposed method over prior approaches in literature, and analyze the structure of obtained controller functions
    • …
    corecore