45,940 research outputs found

    Scientists in the MIST: Simplifying Interface Design for End Users

    Get PDF
    We are building a Malleable Interactive Software Toolkit (MIST), a tool set and infrastructure to simplify the design and construction of dynamically-reconfigurable (malleable) interactive software. Malleable software offers the end-user powerful tools to reshape their interactive environment on the fly. We aim to make the construction of such software straightforward, and to make reconfiguration of the resulting systems approachable and manageable to an educated, but non-specialist, user. To do so, we draw on a diverse body of existing research on alternative approaches to user interface (UI) and interactive software construction, including declarative UI languages, constraint-based programming and UI management, reflection and data-driven programming, and visual programming techniques

    CLPGUI: a generic graphical user interface for constraint logic programming over finite domains

    Full text link
    CLPGUI is a graphical user interface for visualizing and interacting with constraint logic programs over finite domains. In CLPGUI, the user can control the execution of a CLP program through several views of constraints, of finite domain variables and of the search tree. CLPGUI is intended to be used both for teaching purposes, and for debugging and improving complex programs of realworld scale. It is based on a client-server architecture for connecting the CLP process to a Java-based GUI process. Communication by message passing provides an open architecture which facilitates the reuse of graphical components and the porting to different constraint programming systems. Arbitrary constraints and goals can be posted incrementally from the GUI. We propose several dynamic 2D and 3D visualizations of the search tree and of the evolution of finite domain variables. We argue that the 3D representation of search trees proposed in this paper provides the most appropriate visualization of large search trees. We describe the current implementation of the annotations and of the interactive execution model in GNU-Prolog, and report some evaluation results.Comment: 16 pages; Alexandre Tessier, editor; WLPE 2002, http://xxx.lanl.gov/abs/cs.SE/020705

    Emerging from the MIST: A Connector Tool for Supporting Programming by Non-programmers

    Get PDF
    Software development is an iterative process. As user re-quirements emerge software applications must be extended to support the new requirements. Typically, a programmer will add new code to an existing code base of an application to provide a new functionality. Previous research has shown that such extensions are easier when application logic is clearly separated from the user interface logic. Assuming that a programmer is already familiar with the existing code base, the task of writing the new code can be considered to be split into two sub-tasks: writing code for the application logic; that is, the actual functionality of the application; and writing code for the user interface that will expose the functionality to the end user. The goal of this research is to reduce the effort required to create a user interface once the application logic has been created, toward supporting scientists with minimal pro-gramming knowledge to be able to create and modify pro-grams. Using a Model View Controller based architecture, various model components which contain the application logic can be built and extended. The process of creating and extending the views (user interfaces) on these model components is simplified through the use of our Malleable Interactive Software Toolkit (MIST), a tool set an infrastructure intended to simplify the design and extension of dynamically reconfigurable interfaces. This paper focuses on one tool in the MIST suite, a connec-tor tool that enables the programmer to evolve the user interface as the application logic evolves by connecting related pieces of code together; either through simple drag-and-drop interactions or through the authoring of Python code. The connector tool exemplifies the types of tools in the MIST suite, which we expect will encourage collabora-tive development of applications by allowing users to inte-grate various components and minimizing the cost of de-veloping new user interfaces for the combined compo-nents

    Graphical Temporal Structured Programming for Interactive Music

    Get PDF
    International audienceThe development and authoring of interactive music or applications , such as user interfaces for arts & exhibitions has traditionally been done with tools that pertain to two broad metaphors. Cue-based environments work by making groups of parameters and sending them to remote devices , while more interactive applications are generally written in generic art-oriented programming environments, such as Max/MSP, Processing or openFrameworks. In this paper, we present the current version of the i-score se-quencer. It is an extensive graphical software that bridges the gap between time-based, logic-based and flow-based interactive application authoring tools. Built upon a few simple and novel primitives that give to the composer the expressive power of structured programming, i-score provides a time line adapted to the notation of parameter-oriented interactive music, and allows temporal scripting using JavaScript. We present the usage of these primitives, as well as an i-score example of work inspired from music based on polyvalent structure

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Visualization designs for constraint logic programming

    Get PDF
    We address the design and implementation of visual paradigms for observing the execution of constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus on the display of data in CLP executions, where representation for constrained variables and for the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised depictions, have been implemented, and are used to showcase the usefulness of the visualizations developed
    • …
    corecore