20 research outputs found

    Series of Semihypergroups of Time-Varying Articial Neurons and Related Hyperstructures

    Get PDF
    Detailed analysis of the function of multilayer perceptron (MLP) and its neurons together with the use of time-varying neurons allowed the authors to find an analogy with the use of structures of linear differential operators. This procedure allowed the construction of a group and a hypergroup of articial neurons. In this article, focusing on semihyperstructures and using the above described procedure, the authors bring new insights into structures and hyperstructures of articial neurons and their possible symmetric relations

    On Rough Hyperideals in Hyperlattices

    Get PDF
    We introduce and study rough hyperideals in hyperlattices. First, we give some interesting examples of hyperlattices and introduce hyperideals of hyperlattices. Then, applying the notion of rough sets to hyperlattices, we introduce rough hyperideals in hyperlattices, which are extended notions of hyperideals of hyperlattices. In addition, we consider rough hyperideals in Cartesian products and quotients of hyperlattices. Finally, we investigate some properties about homomorphic images of rough hyperideals in hyperlattices

    Regular ag-groupoids characterized by (∈, ∈ ∨ q k)-fuzzy ideals

    Get PDF
    In this paper, we introduce a considerable machinery which permits us to characterize a number of special (fuzzy) subsets in AG -groupoids. Generalizing the concepts of (∈, ∈ ∨q) -fuzzy bi-ideals (interior ideal), we define (∈, ∈ ∨ q k) -fuzzy bi-ideals, (∈, ∈ ∨ q k )-fuzzy left (right)-ideals and ( , ) k ? ? ?q -fuzzy interior ideals in AG -groupoids and discuss some fundamental aspects of these ideals in AG -groupoids. We further define ( ∈, ∈ ∨ q k) -fuzzy bi-ideals and (∈, ∈ ∨ q k)-fuzzy interior ideals and give some of their basic properties in AG -groupoids. In the last section, we define lower/upper parts of (∈, ∈ ∨ q k ) -fuzzy left (resp. right) ideals and investigate some characterizations of regular and intera-regular AG -groupoids in terms of the lower parts of ( ∈, ∈ ∨ q k ) -fuzzy left (resp. right) ideals and ( ∈, ∈ ∨ q k )-fuzzy bi-ideal of AG -groupoids

    Collected Papers (on Neutrosophic Theory and Its Applications in Algebra), Volume IX

    Get PDF
    This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang

    Neutrosophic SuperHyperAlgebra and New Types of Topologies

    Get PDF
    In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology

    Full Issue

    Get PDF
    corecore