51,521 research outputs found

    Fuzzy Optimisation of Structural Performance

    Get PDF
    Structural performance has become a fundamental concept in advanced engineering design in construction. Basic criteria concerning the action effects and imposed performance requirements are analysed assuming two types of uncertainties: randomness and vagueness. The natural randomness of the action effect is handled by commonly used methods of the theory of probability. The vagueness of performance requirements due to indistinct or imprecise specification and perception is analysed using the basic tools of the theory of fuzzy sets. Both types of uncertainties are considered to define fuzzy probabilistic measures of structural performance, the damage function and fuzzy probability of failure. Fuzzy probabilistic optimisation of vibration constraints indicates that the limiting values recommended for the acceleration of building structures may be uneconomical. Further research should focus on verifying of the input theoretical models using available experimental data.

    Uncertainty reasoning and representation: A Comparison of several alternative approaches

    Get PDF
    Much of the research done in Artificial Intelligence involves investigating and developing methods of incorporating uncertainty reasoning and representation into expert systems. Several methods have been proposed and attempted for handling uncertainty in problem solving situations. The theories range from numerical approaches based on strict probabilistic reasoning to non-numeric approaches based on logical reasoning. This study investigates a number of these approaches including Bayesian Probability, Mycin Certainty Factors, Dempster-Shafer Theory of Evidence, Fuzzy Set Theory, Possibility Theory and non monotonic logic. Each of these theories and their underlying formalisms are explored by means of examples. The discussion concentrates on a comparison of the different approaches, noting the type of uncertainty that they best represent

    Технологія моделювання на основі нечітких байєсівських мереж довіри

    Get PDF
    Представлені основні компоненти інформаційної технології індуктивного моделювання причинно-наслідкових зв’язків в умовах невизначеності на основі нечітких байєсівських мереж довіри. Технологія побудована на основі органічного поєднання методів теорії мереж довіри та теорії нечітких множин. Представлені компоненти реалізують повний цикл імовірнісного оцінювання та прогнозування станів досліджуваних систем в умовах невизначеності, а також візуалізацію отриманих результатів.The basic components of information technology of inductive design of causal relationships are presented in the conditions of uncertainty on the basis of fuzzy belief Bayesian network. Technology is built on the basis of organic combination of methods of theory of belief network and theory of fuzzy sets. The presented components will realize the complete cycle of probabilistic evaluation and prognostication of the states of the investigated systems in the conditions of uncertainty, and also visualization of the got results

    Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System

    Full text link
    Due to the inherent aleatory uncertainties in renewable generators, the reliability/adequacy assessments of distributed generation (DG) systems have been particularly focused on the probabilistic modeling of random behaviors, given sufficient informative data. However, another type of uncertainty (epistemic uncertainty) must be accounted for in the modeling, due to incomplete knowledge of the phenomena and imprecise evaluation of the related characteristic parameters. In circumstances of few informative data, this type of uncertainty calls for alternative methods of representation, propagation, analysis and interpretation. In this study, we make a first attempt to identify, model, and jointly propagate aleatory and epistemic uncertainties in the context of DG systems modeling for adequacy assessment. Probability and possibility distributions are used to model the aleatory and epistemic uncertainties, respectively. Evidence theory is used to incorporate the two uncertainties under a single framework. Based on the plausibility and belief functions of evidence theory, the hybrid propagation approach is introduced. A demonstration is given on a DG system adapted from the IEEE 34 nodes distribution test feeder. Compared to the pure probabilistic approach, it is shown that the hybrid propagation is capable of explicitly expressing the imprecision in the knowledge on the DG parameters into the final adequacy values assessed. It also effectively captures the growth of uncertainties with higher DG penetration levels

    Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results

    Full text link
    [EN] With the help of C-contractions having a fixed point, we obtain a characterization of complete fuzzy metric spaces, in the sense of Kramosil and Michalek, that extends the classical theorem of H. Hu (see "Am. Math. Month. 1967, 74, 436-437") that a metric space is complete if and only if any Banach contraction on any of its closed subsets has a fixed point. We apply our main result to deduce that a well-known fixed point theorem due to D. Mihet (see "Fixed Point Theory 2005, 6, 71-78") also allows us to characterize the fuzzy metric completeness.This research was partially funded by Ministerio de Ciencia, Innovacion y Universidades, under grant PGC2018-095709-B-C21 and AEI/FEDER, UE funds.Romaguera Bonilla, S.; Tirado Peláez, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics. 8(2):1-7. https://doi.org/10.3390/math8020273S1782Connell, E. H. (1959). Properties of fixed point spaces. Proceedings of the American Mathematical Society, 10(6), 974-979. doi:10.1090/s0002-9939-1959-0110093-3Hu, T. K. (1967). On a Fixed-Point Theorem for Metric Spaces. The American Mathematical Monthly, 74(4), 436. doi:10.2307/2314587Subrahmanyam, P. V. (1975). Completeness and fixed-points. Monatshefte f�r Mathematik, 80(4), 325-330. doi:10.1007/bf01472580Kirk, W. A. (1976). Caristi’s fixed point theorem and metric convexity. Colloquium Mathematicum, 36(1), 81-86. doi:10.4064/cm-36-1-81-86Caristi, J. (1976). Fixed point theorems for mappings satisfying inwardness conditions. Transactions of the American Mathematical Society, 215, 241-241. doi:10.1090/s0002-9947-1976-0394329-4Suzuki, T., & Takahashi, W. (1996). Fixed point theorems and characterizations of metric completeness. Topological Methods in Nonlinear Analysis, 8(2), 371. doi:10.12775/tmna.1996.040Suzuki, T. (2007). A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(05), 1861-1870. doi:10.1090/s0002-9939-07-09055-7Romaguera, S., & Tirado, P. (2019). A Characterization of Quasi-Metric Completeness in Terms of α–ψ-Contractive Mappings Having Fixed Points. Mathematics, 8(1), 16. doi:10.3390/math8010016Samet, B., Vetro, C., & Vetro, P. (2012). Fixed point theorems for -contractive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(4), 2154-2165. doi:10.1016/j.na.2011.10.014Abbas, M., Ali, B., & Romaguera, S. (2015). Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat, 29(6), 1217-1222. doi:10.2298/fil1506217aCastro-Company, F., Romaguera, S., & Tirado, P. (2015). On the construction of metrics from fuzzy metrics and its application to the fixed point theory of multivalued mappings. Fixed Point Theory and Applications, 2015(1). doi:10.1186/s13663-015-0476-1Radu, V. (1987). Some fixed point theorems probabilistic metric spaces. Lecture Notes in Mathematics, 125-133. doi:10.1007/bfb0072718Sehgal, V. M., & Bharucha-Reid, A. T. (1972). Fixed points of contraction mappings on probabilistic metric spaces. Mathematical Systems Theory, 6(1-2), 97-102. doi:10.1007/bf01706080Ćirić, L. (2010). Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 72(3-4), 2009-2018. doi:10.1016/j.na.2009.10.00

    A Formal Approach based on Fuzzy Logic for the Specification of Component-Based Interactive Systems

    Full text link
    Formal methods are widely recognized as a powerful engineering method for the specification, simulation, development, and verification of distributed interactive systems. However, most formal methods rely on a two-valued logic, and are therefore limited to the axioms of that logic: a specification is valid or invalid, component behavior is realizable or not, safety properties hold or are violated, systems are available or unavailable. Especially when the problem domain entails uncertainty, impreciseness, and vagueness, the appliance of such methods becomes a challenging task. In order to overcome the limitations resulting from the strict modus operandi of formal methods, the main objective of this work is to relax the boolean notion of formal specifications by using fuzzy logic. The present approach is based on Focus theory, a model-based and strictly formal method for componentbased interactive systems. The contribution of this work is twofold: i) we introduce a specification technique based on fuzzy logic which can be used on top of Focus to develop formal specifications in a qualitative fashion; ii) we partially extend Focus theory to a fuzzy one which allows the specification of fuzzy components and fuzzy interactions. While the former provides a methodology for approximating I/O behaviors under imprecision, the latter enables to capture a more quantitative view of specification properties such as realizability.Comment: In Proceedings FESCA 2015, arXiv:1503.0437
    corecore