16 research outputs found

    Foundations of space-time finite element methods: polytopes, interpolation, and integration

    Full text link
    The main purpose of this article is to facilitate the implementation of space-time finite element methods in four-dimensional space. In order to develop a finite element method in this setting, it is necessary to create a numerical foundation, or equivalently a numerical infrastructure. This foundation should include a collection of suitable elements (usually hypercubes, simplices, or closely related polytopes), numerical interpolation procedures (usually orthonormal polynomial bases), and numerical integration procedures (usually quadrature rules). It is well known that each of these areas has yet to be fully explored, and in the present article, we attempt to directly address this issue. We begin by developing a concrete, sequential procedure for constructing generic four-dimensional elements (4-polytopes). Thereafter, we review the key numerical properties of several canonical elements: the tesseract, tetrahedral prism, and pentatope. Here, we provide explicit expressions for orthonormal polynomial bases on these elements. Next, we construct fully symmetric quadrature rules with positive weights that are capable of exactly integrating high-degree polynomials, e.g. up to degree 17 on the tesseract. Finally, the quadrature rules are successfully tested using a set of canonical numerical experiments on polynomial and transcendental functions.Comment: 34 pages, 18 figure

    Geometric optimization problems in quantum computation and discrete mathematics: Stabilizer states and lattices

    Get PDF
    This thesis consists of two parts: Part I deals with properties of stabilizer states and their convex hull, the stabilizer polytope. Stabilizer states, Pauli measurements and Clifford unitaries are the three building blocks of the stabilizer formalism whose computational power is limited by the Gottesman- Knill theorem. This model is usually enriched by a magic state to get a universal model for quantum computation, referred to as quantum computation with magic states (QCM). The first part of this thesis will investigate the role of stabilizer states within QCM from three different angles. The first considered quantity is the stabilizer extent, which provides a tool to measure the non-stabilizerness or magic of a quantum state. It assigns a quantity to each state roughly measuring how many stabilizer states are required to approximate the state. It has been shown that the extent is multiplicative under taking tensor products when the considered state is a product state whose components are composed of maximally three qubits. In Chapter 2, we will prove that this property does not hold in general, more precisely, that the stabilizer extent is strictly submultiplicative. We obtain this result as a consequence of rather general properties of stabilizer states. Informally our result implies that one should not expect a dictionary to be multiplicative under taking tensor products whenever the dictionary size grows subexponentially in the dimension. In Chapter 3, we consider QCM from a resource theoretic perspective. The resource theory of magic is based on two types of quantum channels, completely stabilizer preserving maps and stabilizer operations. Both classes have the property that they cannot generate additional magic resources. We will show that these two classes of quantum channels do not coincide, specifically, that stabilizer operations are a strict subset of the set of completely stabilizer preserving channels. This might have the consequence that certain tasks which are usually realized by stabilizer operations could in principle be performed better by completely stabilizer preserving maps. In Chapter 4, the last one of Part I, we consider QCM via the polar dual stabilizer polytope (also called the Lambda-polytope). This polytope is a superset of the quantum state space and every quantum state can be written as a convex combination of its vertices. A way to classically simulate quantum computing with magic states is based on simulating Pauli measurements and Clifford unitaries on the vertices of the  Lambda-polytope. The complexity of classical simulation with respect to the polytope   is determined by classically simulating the updates of vertices under Clifford unitaries and Pauli measurements. However, a complete description of this polytope as a convex hull of its vertices is only known in low dimensions (for up to two qubits or one qudit when odd dimensional systems are considered). We make progress on this question by characterizing a certain class of operators that live on the boundary of the  Lambda-polytope when the underlying dimension is an odd prime. This class encompasses for instance Wigner operators, which have been shown to be vertices of  Lambda. We conjecture that this class contains even more vertices of  Lambda. Eventually, we will shortly sketch why applying Clifford unitaries and Pauli measurements to this class of operators can be efficiently classically simulated. Part II of this thesis deals with lattices. Lattices are discrete subgroups of the Euclidean space. They occur in various different areas of mathematics, physics and computer science. We will investigate two types of optimization problems related to lattices. In Chapter 6 we are concerned with optimization within the space of lattices. That is, we want to compare the Gaussian potential energy of different lattices. To make the energy of lattices comparable we focus on lattices with point density one. In particular, we focus on even unimodular lattices and show that, up to dimension 24, they are all critical for the Gaussian potential energy. Furthermore, we find that all n-dimensional even unimodular lattices with n   24 are local minima or saddle points. In contrast in dimension 32, there are even unimodular lattices which are local maxima and others which are not even critical. In Chapter 7 we consider flat tori R^n/L, where L is an n-dimensional lattice. A flat torus comes with a metric and our goal is to approximate this metric with a Hilbert space metric. To achieve this, we derive an infinite-dimensional semidefinite optimization program that computes the least distortion embedding of the metric space R^n/L into a Hilbert space. This program allows us to make several interesting statements about the nature of least distortion embeddings of flat tori. In particular, we give a simple proof for a lower bound which gives a constant factor improvement over the previously best lower bound on the minimal distortion of an embedding of an n-dimensional flat torus. Furthermore, we show that there is always an optimal embedding into a finite-dimensional Hilbert space. Finally, we construct optimal least distortion embeddings for the standard torus R^n/Z^n and all 2-dimensional flat tori

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    Conical Designs and Categorical Jordan Algebraic Post-Quantum Theories

    Get PDF
    Physical theories can be characterized in terms of their state spaces and their evolutive equations. The kinematical structure and the dynamical structure of finite dimensional quantum theory are, in light of the Choi-Jamiolkowski isomorphism, one and the same --- namely the homogeneous self-dual cones of positive semi-definite linear endomorphisms on finite dimensional complex Hilbert spaces. From the perspective of category theory, these cones are the sets of morphisms in finite dimensional quantum theory as a dagger compact closed category. Understanding the intricate geometry of these cones and charting the wider landscape for their host category is imperative for foundational physics. In Part I of this thesis, we study the shape of finite dimensional quantum theory in terms of quantum information. We introduce novel geometric structures inscribed within quantum cones: conical t-designs. Conical t-designs are a natural, strictly inclusive generalization of complex projective t-designs. We prove that symmetric informationally complete measurements of arbitrary rank (SIMs), and full sets of mutually unbiased measurements of arbitrary rank (MUMs) are conical 2-designs. SIMs and MUMs correspond to highly symmetric polytopes within the Bloch body. The same holds for the entire class of homogeneous conical 2-designs; moreover, we establish necessary and sufficient conditions for a Bloch polytope to represent a homogeneous conical 2-design. Furthermore, we show that infinite families of such designs exist in all finite dimensions. It turns out that conical 2-designs are naturally adapted to a geometric description of bipartite entanglement. We prove that a quantum measurement is a conical 2-design if and only if there exists a (regular) entanglement monotone whose restriction to pure states is a function of the norm of the probability vector over the outcomes of the bipartite measurement formed from its tensor products. In that case the concurrence is such a monotone. In addition to monotones, we formulate entanglement witnesses in terms of geometric conditions on the aforementioned conical 2-design probabilities. In Part II of this thesis, we move beyond quantum theory within the vein of Euclidean Jordan algebras (EJAs). In light of the Koecher-Vinberg theorem, the positive cones of EJAs are the only homogeneous self-dual cones to be found in a finite dimensional setting. We consider physical theories based on EJAs subject to nonsignaling axioms regarding their compositional structure. We prove that any such Jordanic composite is a Jordan ideal of Hanche-Olsen's universal tensor product. Consequently, no Jordanic composite exists having the exceptional Jordan algebra as a direct summand, nor does any such composite exist if either factor is exceptional. So we focus on special EJAs of self-adjoint matrices over the real, complex, and quaternionic division rings. We demonstrate that these can be organized in a natural way as a symmetric monoidal category, albeit one that is not compact closed. We then construct a related category InvQM of embedded EJAs, having fewer objects but more morphisms, that is dagger compact closed. This category unifies finite dimensional real, complex and quaternionic quantum theories, except that the composite of two complex quantum systems comes with an extra classical bit. Our notion of composite requires neither tomographic locality, nor preservation of purity under monoidal products. The categories we construct include examples in which both of these conditions fail. Our unification cannot be extended to include any finite dimensional spin factors (save the rebit, qubit, and quabit) without destroying compact closure

    Subject Index Volumes 1–200

    Get PDF
    corecore