376 research outputs found

    On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs

    Get PDF
    The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice.Comment: 31 page

    Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems

    Full text link
    The purpose of this paper is to study and design direct and indirect couplings for use in coherent feedback control of a class of linear quantum stochastic systems. A general physical model for a nominal linear quantum system coupled directly and indirectly to external systems is presented. Fundamental properties of stability, dissipation, passivity, and gain for this class of linear quantum models are presented and characterized using complex Lyapunov equations and linear matrix inequalities (LMIs). Coherent HH^\infty and LQG synthesis methods are extended to accommodate direct couplings using multistep optimization. Examples are given to illustrate the results.Comment: 33 pages, 7 figures; accepted for publication in IEEE Transactions on Automatic Control, October 201

    A Systems Theory Approach to the Synthesis of Minimum Noise Phase-Insensitive Quantum Amplifiers

    Full text link
    We present a systems theory approach to the proof of a result bounding the required level of added quantum noise in a phase-insensitive quantum amplifier. We also present a synthesis procedure for constructing a quantum optical phase-insensitive quantum amplifier which adds the minimum level of quantum noise and achieves a required gain and bandwidth. This synthesis procedure is based on a singularly perturbed quantum system and leads to an amplifier involving two squeezers and two beamsplitters.Comment: To appear in the Proceedings of the 2018 European Control Conferenc

    A Direct Coupling Coherent Quantum Observer for a Single Qubit Finite Level Quantum System

    Full text link
    This paper considers the problem of constructing a direct coupling quantum observer for a single qubit finite level quantum system plant. The proposed observer is a single mode linear quantum system which is shown to be able to estimate one of the plant variables in a time averaged sense. A numerical example and simulations are included to illustrate the properties of the observer.Comment: A preliminary version of this paper has been accepted to appear in the 2014 Australian Control Conferenc

    Coherent-Classical Estimation for Quantum Linear Systems

    Full text link
    This paper introduces a problem of coherent-classical estimation for a class of linear quantum systems. In this problem, the estimator is a mixed quantum-classical system which produces a classical estimate of a system variable. The coherent-classical estimator may also involve coherent feedback. An example involving optical squeezers is given to illustrate the efficacy of this idea.Comment: A version of this paper will appear in the Proceedings of the 2013 Australian Control Conferenc
    corecore