2,525 research outputs found

    Higher-order multi-scale deep Ritz method for multi-scale problems of authentic composite materials

    Full text link
    The direct deep learning simulation for multi-scale problems remains a challenging issue. In this work, a novel higher-order multi-scale deep Ritz method (HOMS-DRM) is developed for thermal transfer equation of authentic composite materials with highly oscillatory and discontinuous coefficients. In this novel HOMS-DRM, higher-order multi-scale analysis and modeling are first employed to overcome limitations of prohibitive computation and Frequency Principle when direct deep learning simulation. Then, improved deep Ritz method are designed to high-accuracy and mesh-free simulation for macroscopic homogenized equation without multi-scale property and microscopic lower-order and higher-order cell problems with highly discontinuous coefficients. Moreover, the theoretical convergence of the proposed HOMS-DRM is rigorously demonstrated under appropriate assumptions. Finally, extensive numerical experiments are presented to show the computational accuracy of the proposed HOMS-DRM. This study offers a robust and high-accuracy multi-scale deep learning framework that enables the effective simulation and analysis of multi-scale problems of authentic composite materials

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Nonlinear dynamics of full-range CNNs with time-varying delays and variable coefficients

    Get PDF
    In the article, the dynamical behaviours of the full-range cellular neural networks (FRCNNs) with variable coefficients and time-varying delays are considered. Firstly, the improved model of the FRCNNs is proposed, and the existence and uniqueness of the solution are studied by means of differential inclusions and set-valued analysis. Secondly, by using the Hardy inequality, the matrix analysis, and the Lyapunov functional method, we get some criteria for achieving the globally exponential stability (GES). Finally, some examples are provided to verify the correctness of the theoretical results

    Bifurcations of piecewise smooth ļ¬‚ows:perspectives, methodologies and open problems

    Get PDF
    In this paper, the theory of bifurcations in piecewise smooth flows is critically surveyed. The focus is on results that hold in arbitrarily (but finitely) many dimensions, highlighting significant areas where a detailed understanding is presently lacking. The clearest results to date concern equilibria undergoing bifurcations at switching boundaries, and limit cycles undergoing grazing and sliding bifurcations. After discussing fundamental concepts, such as topological equivalence of two piecewise smooth systems, discontinuity-induced bifurcations are defined for equilibria and limit cycles. Conditions for equilibria to exist in n-dimensions are given, followed by the conditions under which they generically undergo codimension-one bifurcations. The extent of knowledge of their unfoldings is also summarized. Codimension-one bifurcations of limit cycles and boundary-intersection crossing are described together with techniques for their classification. Codimension-two bifurcations are discussed with suggestions for further study

    Learning Homogenization for Elliptic Operators

    Full text link
    Multiscale partial differential equations (PDEs) arise in various applications, and several schemes have been developed to solve them efficiently. Homogenization theory is a powerful methodology that eliminates the small-scale dependence, resulting in simplified equations that are computationally tractable. In the field of continuum mechanics, homogenization is crucial for deriving constitutive laws that incorporate microscale physics in order to formulate balance laws for the macroscopic quantities of interest. However, obtaining homogenized constitutive laws is often challenging as they do not in general have an analytic form and can exhibit phenomena not present on the microscale. In response, data-driven learning of the constitutive law has been proposed as appropriate for this task. However, a major challenge in data-driven learning approaches for this problem has remained unexplored: the impact of discontinuities and corner interfaces in the underlying material. These discontinuities in the coefficients affect the smoothness of the solutions of the underlying equations. Given the prevalence of discontinuous materials in continuum mechanics applications, it is important to address the challenge of learning in this context; in particular to develop underpinning theory to establish the reliability of data-driven methods in this scientific domain. The paper addresses this unexplored challenge by investigating the learnability of homogenized constitutive laws for elliptic operators in the presence of such complexities. Approximation theory is presented, and numerical experiments are performed which validate the theory for the solution operator defined by the cell-problem arising in homogenization for elliptic PDEs
    • ā€¦
    corecore