108 research outputs found

    Design of a simulation platform to test next generation of terrestrial DVB

    Get PDF
    Digital Terrestrial Television Broadcasting (DTTB) is a member of our daily life routine, and nonetheless, according to new users’ necessities in the fields of communications and leisure, new challenges are coming up. Moreover, the current Standard is not able to satisfy all the potential requirements. For that reason, first of all, a review of the current Standard has been performed within this work. Then, it has been identified the needing of developing a new version of the standard, ready to support enhanced services, as for example broadcasting transmissions to moving terminals or High Definition Television (HDTV) transmissions, among others. The main objective of this project is the design and development of a physical layer simulator of the whole DVB-T standard, including both the complete transmission and reception procedures. The simulator has been developed in Matlab. A detailed description of the simulator both from a functional and an architectural point of view is included. The simulator is the base for testing any possible modifications that may be included into the DVB-T2 future standard. In fact, several proposed enhancements have already been carried out and their performance has been evaluated. Specifically, the use of higher order modulation schemes, and the corresponding modifications in all the system blocks, have been included and evaluated. Furthermore, the simulator will allow testing other enhancements as the use of more efficient encoders and interleavers, MIMO technologies, and so on. A complete set of numerical results showing the performance of the different parts of the system, are presented in order to validate the correctness of the implementation and to evaluate both the current standard performance and the proposed enhancements. This work has been performed within the context of a project called FURIA, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce. A brief description of this project and its consortium has been also included herein, together with an introduction to the current situation of the DTTB in Spain (called TDT in Spanish)

    PERFORMANCE COMPARISON OF NON-INTERLEAVED BCH CODES AND INTERLEAVED BCH CODES

    Get PDF
    This project covers the research about the BCH error correcting codes and the performance of interleaved and non-interleaved BCH codes. Both long and short BCH codes for multimedia communication are examined in an A WGN channel. Algorithm for simulating the BCH codes was also being investigated, which includes generating the parity check matrix, generating the message code in Galois array matrix, encoding the message blocks, modulation and decoding the message blocks. Algorithm for interleaving that includes interleaving message, including burst errors and deinterleaving message is combined with the BCH codes algorithm for simulating the interleaved BCH codes. The performance and feasibility of the coding structure are tested. The performance comparison between interleaved and noninterleaved BCH codes is studied in terms of error performance, channel performance and effect of data rates on the bit error rate (BER). The Berlekamp-Massey Algorithm decoding scheme was implemented. Random integers are generated and encoded with BCH encoder. Burst errors are added before the message is interleaved, then enter modulation and channel simulation. Interleaved message is then compared with noninterleaved message and the error statistics are compared. Initially, certain amount of burst errors is used. "ft is found that the graph does not agree with the theoretical bit error rate (BER) versus signal-to-noise ratio (SNR). When compared between each BCH codeword (i.e. n = 31, n = 63 and n = 127), n = 31 shows the highest BER while n = 127 shows the lowest BER. This happened because of the occurrence of error bursts and also due to error frequency. A reduced size or errors from previous is used in the algorithm. A graph similar to the theoretical BER vs SNR is obtained for both interleaved and non-interleaved BCH codes. It is found that BER of non-interleaved is higher than interleaved BCH codes as SNR increases. These observations show that size of errors influence the effect of interleaving. Simulation time is also studied in terms of block length. It is found that interleaved BCH codes consume longer simulation time compared to non-interleaved BCH codes due to additional algorithm for the interleaved BCH codes

    Design of a simulation platform to test next generation of terrestrial DVB

    Get PDF
    Digital Terrestrial Television Broadcasting (DTTB) is a member of our daily life routine, and nonetheless, according to new users’ necessities in the fields of communications and leisure, new challenges are coming up. Moreover, the current Standard is not able to satisfy all the potential requirements. For that reason, first of all, a review of the current Standard has been performed within this work. Then, it has been identified the needing of developing a new version of the standard, ready to support enhanced services, as for example broadcasting transmissions to moving terminals or High Definition Television (HDTV) transmissions, among others. The main objective of this project is the design and development of a physical layer simulator of the whole DVB-T standard, including both the complete transmission and reception procedures. The simulator has been developed in Matlab. A detailed description of the simulator both from a functional and an architectural point of view is included. The simulator is the base for testing any possible modifications that may be included into the DVB-T2 future standard. In fact, several proposed enhancements have already been carried out and their performance has been evaluated. Specifically, the use of higher order modulation schemes, and the corresponding modifications in all the system blocks, have been included and evaluated. Furthermore, the simulator will allow testing other enhancements as the use of more efficient encoders and interleavers, MIMO technologies, and so on. A complete set of numerical results showing the performance of the different parts of the system, are presented in order to validate the correctness of the implementation and to evaluate both the current standard performance and the proposed enhancements. This work has been performed within the context of a project called FURIA, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce. A brief description of this project and its consortium has been also included herein, together with an introduction to the current situation of the DTTB in Spain (called TDT in Spanish)
    • …
    corecore