115,803 research outputs found

    On the structure of non-full-rank perfect codes

    Full text link
    The Krotov combining construction of perfect 1-error-correcting binary codes from 2000 and a theorem of Heden saying that every non-full-rank perfect 1-error-correcting binary code can be constructed by this combining construction is generalized to the qq-ary case. Simply, every non-full-rank perfect code CC is the union of a well-defined family of μ\mu-components KμK_\mu, where μ\mu belongs to an "outer" perfect code C∗C^*, and these components are at distance three from each other. Components from distinct codes can thus freely be combined to obtain new perfect codes. The Phelps general product construction of perfect binary code from 1984 is generalized to obtain μ\mu-components, and new lower bounds on the number of perfect 1-error-correcting qq-ary codes are presented.Comment: 8 page

    On diameter perfect constant-weight ternary codes

    Get PDF
    From cosets of binary Hamming codes we construct diameter perfect constant-weight ternary codes with weight n−1n-1 (where nn is the code length) and distances 3 and 5. The class of distance 5 codes has parameters unknown before. Keywords: constant-weight codes, ternary codes, perfect codes, diameter perfect codes, perfect matchings, Preparata codesComment: 15 pages, 2 figures; presented at 2004 Com2MaC Conference on Association Schemes, Codes and Designs; submitted to Discrete Mathematic

    The Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties

    Full text link
    A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. \"Osterg{\aa}rd and O. Pottonen, "The perfect binary one-error-correcting codes of length 15: Part I--Classification," IEEE Trans. Inform. Theory vol. 55, pp. 4657--4660, 2009]. In the current accompanying work, the classified codes are studied in great detail, and their main properties are tabulated. The results include the fact that 33 of the 80 Steiner triple systems of order 15 occur in such codes. Further understanding is gained on full-rank codes via switching, as it turns out that all but two full-rank codes can be obtained through a series of such transformations from the Hamming code. Other topics studied include (non)systematic codes, embedded one-error-correcting codes, and defining sets of codes. A classification of certain mixed perfect codes is also obtained.Comment: v2: fixed two errors (extension of nonsystematic codes, table of coordinates fixed by symmetries of codes), added and extended many other result

    On the binary codes with parameters of triply-shortened 1-perfect codes

    Full text link
    We study properties of binary codes with parameters close to the parameters of 1-perfect codes. An arbitrary binary (n=2m−3,2n−m−1,4)(n=2^m-3, 2^{n-m-1}, 4) code CC, i.e., a code with parameters of a triply-shortened extended Hamming code, is a cell of an equitable partition of the nn-cube into six cells. An arbitrary binary (n=2m−4,2n−m,3)(n=2^m-4, 2^{n-m}, 3) code DD, i.e., a code with parameters of a triply-shortened Hamming code, is a cell of an equitable family (but not a partition) from six cells. As a corollary, the codes CC and DD are completely semiregular; i.e., the weight distribution of such a code depends only on the minimal and maximal codeword weights and the code parameters. Moreover, if DD is self-complementary, then it is completely regular. As an intermediate result, we prove, in terms of distance distributions, a general criterion for a partition of the vertices of a graph (from rather general class of graphs, including the distance-regular graphs) to be equitable. Keywords: 1-perfect code; triply-shortened 1-perfect code; equitable partition; perfect coloring; weight distribution; distance distributionComment: 12 page

    On the number of 1-perfect binary codes: a lower bound

    Full text link
    We present a construction of 1-perfect binary codes, which gives a new lower bound on the number of such codes. We conjecture that this lower bound is asymptotically tight.Comment: 5pp(Eng)+7pp(Rus) V2: revised V3: + Russian version, + reference

    On Optimal Binary One-Error-Correcting Codes of Lengths 2m−42^m-4 and 2m−32^m-3

    Full text link
    Best and Brouwer [Discrete Math. 17 (1977), 235-245] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2m−42^m-4 and 2m−32^m-3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computer-aided classification of the optimal binary one-error-correcting codes of lengths 12 and 13 possible; there are 237610 and 117823 such codes, respectively (with 27375 and 17513 inequivalent extensions). This completes the classification of optimal binary one-error-correcting codes for all lengths up to 15. Some properties of the classified codes are further investigated. Finally, it is proved that for any m≥4m \geq 4, there are optimal binary one-error-correcting codes of length 2m−42^m-4 and 2m−32^m-3 that cannot be lengthened to perfect codes of length 2m−12^m-1.Comment: Accepted for publication in IEEE Transactions on Information Theory. Data available at http://www.iki.fi/opottone/code
    • …
    corecore