28,989 research outputs found

    A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem

    Full text link
    The clustered planarity problem (c-planarity) asks whether a hierarchically clustered graph admits a planar drawing such that the clusters can be nicely represented by regions. We introduce the cd-tree data structure and give a new characterization of c-planarity. It leads to efficient algorithms for c-planarity testing in the following cases. (i) Every cluster and every co-cluster (complement of a cluster) has at most two connected components. (ii) Every cluster has at most five outgoing edges. Moreover, the cd-tree reveals interesting connections between c-planarity and planarity with constraints on the order of edges around vertices. On one hand, this gives rise to a bunch of new open problems related to c-planarity, on the other hand it provides a new perspective on previous results.Comment: 17 pages, 2 figure

    Orientation-Constrained Rectangular Layouts

    Full text link
    We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientation-constrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.Comment: To appear at Algorithms and Data Structures Symposium, Banff, Canada, August 2009. 12 pages, 5 figure

    Combinatorial approach to Modularity

    Full text link
    Communities are clusters of nodes with a higher than average density of internal connections. Their detection is of great relevance to better understand the structure and hierarchies present in a network. Modularity has become a standard tool in the area of community detection, providing at the same time a way to evaluate partitions and, by maximizing it, a method to find communities. In this work, we study the modularity from a combinatorial point of view. Our analysis (as the modularity definition) relies on the use of the configurational model, a technique that given a graph produces a series of randomized copies keeping the degree sequence invariant. We develop an approach that enumerates the null model partitions and can be used to calculate the probability distribution function of the modularity. Our theory allows for a deep inquiry of several interesting features characterizing modularity such as its resolution limit and the statistics of the partitions that maximize it. Additionally, the study of the probability of extremes of the modularity in the random graph partitions opens the way for a definition of the statistical significance of network partitions.Comment: 8 pages, 4 figure

    Clustering and Community Detection with Imbalanced Clusters

    Full text link
    Spectral clustering methods which are frequently used in clustering and community detection applications are sensitive to the specific graph constructions particularly when imbalanced clusters are present. We show that ratio cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced cluster sizes since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced cluster sizes. Our approach parameterizes a family of graphs by adaptively modulating node degrees on a fixed node set, yielding a set of parameter dependent cuts reflecting varying levels of imbalance. The solution to our problem is then obtained by optimizing over these parameters. We present rigorous limit cut analysis results to justify our approach and demonstrate the superiority of our method through experiments on synthetic and real datasets for data clustering, semi-supervised learning and community detection.Comment: Extended version of arXiv:1309.2303 with new applications. Accepted to IEEE TSIP

    Tverberg's theorem with constraints

    Get PDF
    The topological Tverberg theorem claims that for any continuous map of the (q-1)(d+1)-simplex to R^d there are q disjoint faces such that their images have a non-empty intersection. This has been proved for affine maps, and if qq is a prime power, but not in general. We extend the topological Tverberg theorem in the following way: Pairs of vertices are forced to end up in different faces. This leads to the concept of constraint graphs. In Tverberg's theorem with constraints, we come up with a list of constraints graphs for the topological Tverberg theorem. The proof is based on connectivity results of chessboard-type complexes. Moreover, Tverberg's theorem with constraints implies new lower bounds for the number of Tverberg partitions. As a consequence, we prove Sierksma's conjecture for d=2d=2, and q=3q=3.Comment: 16 pages, 12 figures. Accepted for publication in JCTA. Substantial revision due to the referee

    Split digraphs

    Get PDF
    We generalize the class of split graphs to the directed case and show that these split digraphs can be identified from their degree sequences. The first degree sequence characterization is an extension of the concept of splittance to directed graphs, while the second characterization says a digraph is split if and only if its degree sequence satisfies one of the Fulkerson inequalities (which determine when an integer-pair sequence is digraphic) with equality.Comment: 14 pages, 2 figures; Accepted author manuscript (AAM) versio

    Spectral Clustering with Imbalanced Data

    Full text link
    Spectral clustering is sensitive to how graphs are constructed from data particularly when proximal and imbalanced clusters are present. We show that Ratio-Cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced data since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced data. Our approach parameterizes a family of graphs, by adaptively modulating node degrees on a fixed node set, to yield a set of parameter dependent cuts reflecting varying levels of imbalance. The solution to our problem is then obtained by optimizing over these parameters. We present rigorous limit cut analysis results to justify our approach. We demonstrate the superiority of our method through unsupervised and semi-supervised experiments on synthetic and real data sets.Comment: 24 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1302.513
    • …
    corecore