12,166 research outputs found

    Packing and covering with balls on Busemann surfaces

    Full text link
    In this note we prove that for any compact subset SS of a Busemann surface (S,d)({\mathcal S},d) (in particular, for any simple polygon with geodesic metric) and any positive number δ\delta, the minimum number of closed balls of radius δ\delta with centers at S\mathcal S and covering the set SS is at most 19 times the maximum number of disjoint closed balls of radius δ\delta centered at points of SS: ν(S)ρ(S)19ν(S)\nu(S) \le \rho(S) \le 19\nu(S), where ρ(S)\rho(S) and ν(S)\nu(S) are the covering and the packing numbers of SS by δ{\delta}-balls.Comment: 27 page

    Monochromatic Clique Decompositions of Graphs

    Get PDF
    Let GG be a graph whose edges are coloured with kk colours, and H=(H1,,Hk)\mathcal H=(H_1,\dots , H_k) be a kk-tuple of graphs. A monochromatic H\mathcal H-decomposition of GG is a partition of the edge set of GG such that each part is either a single edge or forms a monochromatic copy of HiH_i in colour ii, for some 1ik1\le i\le k. Let ϕk(n,H)\phi_{k}(n,\mathcal H) be the smallest number ϕ\phi, such that, for every order-nn graph and every kk-edge-colouring, there is a monochromatic H\mathcal H-decomposition with at most ϕ\phi elements. Extending the previous results of Liu and Sousa ["Monochromatic KrK_r-decompositions of graphs", Journal of Graph Theory}, 76:89--100, 2014], we solve this problem when each graph in H\mathcal H is a clique and nn0(H)n\ge n_0(\mathcal H) is sufficiently large.Comment: 14 pages; to appear in J Graph Theor
    corecore