883 research outputs found

    Spectral Efficiency and Energy Efficiency Tradeoff in Massive MIMO Downlink Transmission with Statistical CSIT

    Full text link
    As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.Comment: Typos corrected. 14 pages, 7 figures. Accepted for publication on IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:2002.0488

    Joint Bit Allocation and Hybrid Beamforming Optimization for Energy Efficient Millimeter Wave MIMO Systems

    Get PDF
    In this paper, we aim to design highly energy efficient end-to-end communication for millimeter wave multiple-input multiple-output systems. This is done by jointly optimizing the digital-to-analog converter (DAC)/analog-to-digital converter (ADC) bit resolutions and hybrid beamforming matrices. The novel decomposition of the hybrid precoder and the hybrid combiner to three parts is introduced at the transmitter (TX) and the receiver (RX), respectively, representing the analog precoder/combiner matrix, the DAC/ADC bit resolution matrix and the baseband precoder/combiner matrix. The unknown matrices are computed as a solution to the matrix factorization problem where the optimal fully digital precoder or combiner is approximated by the product of these matrices. A novel and efficient solution based on the alternating direction method of multipliers is proposed to solve these problems at both the TX and the RX. The simulation results show that the proposed solution, where the DAC/ADC bit allocation is dynamic during operation, achieves higher energy efficiency when compared with existing benchmark techniques that use fixed DAC/ADC bit resolutions.Comment: arXiv admin note: text overlap with arXiv:1909.1217

    Performance Analysis of OTSM under Hardware Impairments in Millimeter-Wave Vehicular Communication Networks

    Full text link
    Orthogonal time sequency multiplexing (OTSM) has been recently proposed as a single-carrier (SC) waveform offering similar bit error rate (BER) to multi-carrier orthogonal time frequency space (OTFS) modulation in doubly-spread channels under high mobilities; however, with much lower complexity making OTSM a promising candidate for low-power millimeter-wave (mmWave) vehicular communications in 6G wireless networks. In this paper, the performance of OTSM-based homodyne transceiver is explored under hardware impairments (HIs) including in-phase and quadrature imbalance (IQI), direct current offset (DCO), phase noise, power amplifier non-linearity, carrier frequency offset, and synchronization timing offset. First, the discrete-time baseband signal model is obtained in vector form under the mentioned HIs. Then, the system input-output relations are derived in time, delay-time, and delay-sequency (DS) domains in which the parameters of HIs are incorporated. Analytical studies demonstrate that noise stays white Gaussian and effective channel matrix is sparse in the DS domain under HIs. Also, DCO appears as a DC signal at receiver interfering with only the zero sequency over all delay taps in the DS domain; however, IQI redounds to self-conjugated fully-overlapping sequency interference. Simulation results reveal the fact that with no HI compensation (HIC), not only OTSM outperforms plain SC waveform but it performs close to uncompensated OTFS system; however, HIC is essentially needed for OTSM systems operating in mmWave and beyond frequency bands

    Joint Waveform and Clustering Design for Coordinated Multi-point DFRC Systems

    Get PDF
    To improve both sensing and communication performances, this paper proposes a coordinated multi-point (CoMP) transmission design for a dual-functional radar-communication (DFRC) system. In the proposed CoMP-DFRC system, the central processor (CP) coordinates multiple base stations (BSs) to transmit both the communication signal and the dedicated probing signal. The communication performance and the sensing performance are both evaluated by the signal-to-interference-plus-noise ratio (SINR). Given the limited backhaul capacity, we study the waveform and clustering design from both the radar-centric perspective and the communication-centric perspective. Dinkelbach’s transform is adopted to handle the single-ratio fractional objective for the radar-centric problem. For the communication-centric problem, we adopt quadratic transform to convexitify the multi-ratio fractional objective. Then, the rank-one constraint of communication beamforming vector is relaxed by semidefinite relaxation (SDR), and the tightness of SDR is further proved to guarantee the optimal waveform design with fixed clustering. For dynamic clustering, equivalent continuous functions are used to represent the non-continuous clustering variables. Successive convex approximation (SCA) is further utilized to convexitify the equivalent functions. Simulation results are provided to verify the effectiveness of all proposed designs
    • …
    corecore