1,178 research outputs found

    Channel monitored channel duplexer for optimization of bidirectional passive optical network

    Get PDF
    Method of optimizing the optical network transmission in access network has been investigated in many years. Unidirectional optical transmission system is the earliest method of delivering the information. In recent years, bidirectional optical transmission system is the most popular network and shall be the first right of refusal to deploy nowadays. It is justify enough by the massive deployment of the popular state-of-the-art network named Passive Optical Network (PON) in Fiber To The Home (FTTH) technologies. Combining 3 wavelengths includes (1) 1310nm, (2) 1490nm, and (3) 1550nm within a fiber is the method used on Gigabit Capable Passive Optical Network (GPON) or Gigabit Ethernet Passive Optical Network (GEPON/EPON). Combining 2 different wavelengths for uplink and downlink on Small Form Pluggable (SFP) lasers also has been a method used to optimized and saved the fiber infrastructure. Compared those techniques, the research optimization focusing on introducing a passive optical duplexer that combined the same wavelength from both end with the element of monitoring via different wavelength to confirm the network availability. In the design, a unidirectional converter able to operate at a nominal 1310nm or 1550nm windows shall be demonstrated up to 10Gbps Ethernet signal

    Switching Equipment Location/Allocation in hybrid PONs

    Get PDF
    Our research goal is to investigate the FTTX (Fiber-to-the Home/Premises/Curb) passive optical network (PON) for the deployment of BISAN (Broadband Internet Subscriber Access Network) to exploit the opportunities of optical fiber enabled technologies as well as of passive switching equipment. Indeed, the deployment of FTTX PON is the most OPEX-friendly scenario, because it allows for completely passive access networks through minimizing the number of active components in the network. Previously, most FTTX PON architectures are designed based on the principle of either time division multiplexing (TDM) technology or wavelength division multiplexing (WDM) technology. We focus on designing the best possible architectures of FTTX PON, specifically hybrid PONs, which embraces both TDM and WDM technology. A hybrid PON architecture is very efficient as it is not limited to any specific PON technology, rather it is flexible enough to deploy TDM/WDM technology depending on the type (i.e unicast/multicast) and amount of traffic demand of the end-users. The advantages of a hybrid PON are of two folds: (i) it can offer increased data rate to each user by employing WDM technology, (ii) it can provide flexible bandwidth utilization by employing TDM technology. In this thesis, we concentrate on determining the optimized covering of a geographical area by a set of cost-effective hybrid PONs. We also focus on the greenfield deployment of a single hybrid PON. It should be worthy to mention that while investigating the deployment of hybrid PONs, the research community around the world considers the specifications of either the physical layer or the optical layer. But an efficient planning for PON deployment should take into account the constraints of the physical and optical layers in order that both layers can work together harmoniously. We concentrate our research on the network dimensioning and the selection as well as the placement of the switching equipment in hybrid PONs with the intention of considering the constraints of both physical and optical layers. We determine the layout of an optimized PON architecture while provisioning wavelengths in a hybrid PON. We also propose to select the switching equipment depending on the type (unicast/multicast) of traffic demand. Finally, we determine the best set of hybrid PONs along with their cascading architecture, type and location of their switching equipment while satisfying the network design constraints such as the number of output ports of the switching equipment and maximum allowed signal power loss experienced at each end user’s premises. In this thesis, we propose two novel schemes for the greenfield deployment of a single hybrid PON. The first scheme consists of two phases in which a heuristic algorithm and a novel column generation (CG) based integer linear programming (ILP) optimization model are proposed in the 1st and 2nd phase respectively. In the second scheme, a novel integrated CG based ILP cross layer optimization model is proposed for the designing of a single hybrid PON. We also propose two novel schemes to deal with the greenfield deployment of multiple hybrid PONs in a given geographical area. These two schemes determine the best set of cost-effective hybrid PONs in order to serve all the end users in a given neighborhood. The first scheme executes in four phases in which two heuristic algorithms, a CG based ILP model and an ILP optimization model are proposed in the 1st, 2nd, 3rd and 4th phase respectively. In the second scheme, an ILP model as well as a CG based ILP model, another ILP model as well as another CG based ILP model, a CG based ILP model and an ILP optimization model are proposed during four consecutive phases. Our proposed scheme can optimize the design of a set of hybrid PONs covering a given geographic area as well as the selection of the best cascading architecture 1/2/mixedstage) for each selected PON. It minimizes the overall network deployment cost based on the location of the OLT and the ONUs while granting all traffic demands. The scheme emphasizes on the optimum placement of equipment in a hybrid PON infrastructure due to the critical dependency between the network performances and a proper deployment of its equipment, which, in turn depends on the locations of the users. It is a quite powerful scheme as it can handle data instances with up to several thousands ONUs. On the basis of the computational results, the proposed scheme leads to an efficient automated tool for network design, planning, and performance evaluation which can be beneficial for the network designers

    Energy efficiency analysis of next-generation passive optical network (NG-PON) technologies in a major city network

    Get PDF
    Ever-increasing bandwidth demands associated with mobile backhaul, content-rich services and the convergence of residential and business access will drive the need for next-generation passive optical networks (NG-PONs) in the long term. At the same time, there is a growing interest in reducing the energy consumption and the associated cost of the access network. In this paper, we consider a deployment scenario in a major city to assess the energy efficiency of various PON solutions from a telecom operator's perspective. We compare five next-generation technologies to a baseline GPON deployment offering similar bandwidths and Quality of Service (QoS) for best-effort high speed connectivity services. We follow two approaches:first, we consider a fixed split ratio (1:64) in an existing Optical Distribution Network (ODN); next, we consider an upgraded ODN with an optimized split ratio for the specific bandwidth and QoS values. For medium bandwidth demands, our results show that legacy PONs can be upgraded to 10G PON without any ODN modification. For future applications that may require access rates up to 1 Gb/s, NG-PON2 technologies with higher split ratios and increased reach become more interesting systems, offering the potential for both increased energy efficiency and node consolidation

    Next-generation optical access seamless Evolution: concluding results of the European FP7 project OASE

    Get PDF
    Increasing bandwidth demand drives the need for next-generation optical access (NGOA) networks that can meet future end-user service requirements. This paper gives an overview of NGOA solutions, the enabling optical access network technologies, architecture principles, and related economics and business models. NGOA requirements (including peak and sustainable data rate, reach, cost, node consolidation, and open access) are proposed, and the different solutions are compared against such requirements in different scenarios (in terms of population density and system migration). Unsurprisingly, it is found that different solutions are best suited for different scenarios. The conclusions drawn from such findings allow us to formulate recommendations in terms of technology, strategy, and policy. The paper is based on the main results of the European FP7 OASE Integrated Project that ran between January 1, 2010 and February 28, 2013

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Field-Trial of a high-budget, filterless, lambda-to-the-user, UDWDM-PON enabled by an innovative class of low-cost coherent transceivers

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We experimentally demonstrate an innovative ultradense wavelength division multiplexing (UDWDM) passive optical networks (PON) that implements the full ¿-to-the-user concept in a filterless distribution network. Key element of the proposed system is a novel class of coherent transceivers, purposely developed with a nonconventional technical approach. Indeed, they are designed and realized to avoid D/A-A/D converter stages and digital signal processing in favor of simple analog processing so that they match system, cost, and power consumption requirements of the access networks without sacrificing the overall performance. These coherent transceivers target different use case scenarios (residential, business, fixed, wireless) still keeping perfect compatibility and co-existence with legacy infrastructures installed to support gray, time division multiplexed PON systems. Moreover, the availability of coherent transceivers of different cost/performance ratios allows for deployments of different quality service grades. In this paper, we report the successful field trial of the proposed systems in a testbed where 14 UDWDM channels (and one legacy E-PON system) are transmitted simultaneously in a dark-fiber network deployed in the city of Pisa (Italy), delivering real-time and/or test traffic. The trial demonstrated filterless operations (each remote node selects individually its own UDWDM channel on a fine 6.25-GHz grid), real-time GbE transmissions (by using either fully analog or light digital signal processing), multirate transmission (1.25 and 10 Gb/s), high optical distribution network loss (18-40 dB) as well as a bidirectional channel monitoring system.Peer ReviewedPostprint (author's final draft

    Optimum design for BB84 quantum key distribution in tree-type passive optical networks

    Full text link
    We show that there is a tradeoff between the useful key distribution bit rate and the total length of deployed fiber in tree-type passive optical networks for BB84 quantum key distribution applications. A two stage splitting architecture where one splitting is carried in the central office and a second in the outside plant and figure of merit to account for the tradeoff are proposed. We find that there is an optimum solution for the splitting ratios of both stages in the case of Photon Number Splitting (PNS) attacks and Decoy State transmission. We then analyze the effects of the different relevant physical parameters of the PON on the optimum solution.Comment: Published in the Journal of the Optical Society of America
    • …
    corecore