138,673 research outputs found

    Approximation Bounds For Minimum Degree Matching

    Full text link
    We consider the MINGREEDY strategy for Maximum Cardinality Matching. MINGREEDY repeatedly selects an edge incident with a node of minimum degree. For graphs of degree at most Δ\Delta we show that MINGREEDY achieves approximation ratio at least Δ−12Δ−3 \frac{\Delta-1}{2\Delta-3} in the worst case and that this performance is optimal among adaptive priority algorithms in the vertex model, which include many prominent greedy matching heuristics. Even when considering expected approximation ratios of randomized greedy strategies, no better worst case bounds are known for graphs of small degrees.Comment: % CHANGELOG % rev 1 2014-12-02 % - Show that the class APV contains many prominent greedy matching algorithms. % - Adapt inapproximability bound for APV-algorithms to a priori knowledge on |V|. % rev 2 2015-10-31 % - improve performance guarantee of MINGREEDY to be tigh

    Fast Two-Robot Disk Evacuation with Wireless Communication

    Get PDF
    In the fast evacuation problem, we study the path planning problem for two robots who want to minimize the worst-case evacuation time on the unit disk. The robots are initially placed at the center of the disk. In order to evacuate, they need to reach an unknown point, the exit, on the boundary of the disk. Once one of the robots finds the exit, it will instantaneously notify the other agent, who will make a beeline to it. The problem has been studied for robots with the same speed~\cite{s1}. We study a more general case where one robot has speed 11 and the other has speed s≥1s \geq 1. We provide optimal evacuation strategies in the case that s≥c2.75≈2.75s \geq c_{2.75} \approx 2.75 by showing matching upper and lower bounds on the worst-case evacuation time. For 1≤s<c2.751\leq s < c_{2.75}, we show (non-matching) upper and lower bounds on the evacuation time with a ratio less than 1.221.22. Moreover, we demonstrate that a generalization of the two-robot search strategy from~\cite{s1} is outperformed by our proposed strategies for any s≥c1.71≈1.71s \geq c_{1.71} \approx 1.71.Comment: 18 pages, 10 figure

    A Generalized Matching Reconfiguration Problem

    Get PDF
    The goal in reconfiguration problems is to compute a gradual transformation between two feasible solutions of a problem such that all intermediate solutions are also feasible. In the Matching Reconfiguration Problem (MRP), proposed in a pioneering work by Ito et al. from 2008, we are given a graph G and two matchings M and M\u27, and we are asked whether there is a sequence of matchings in G starting with M and ending at M\u27, each resulting from the previous one by either adding or deleting a single edge in G, without ever going through a matching of size < min{|M|,|M\u27|}-1. Ito et al. gave a polynomial time algorithm for the problem, which uses the Edmonds-Gallai decomposition. In this paper we introduce a natural generalization of the MRP that depends on an integer parameter ? ? 1: here we are allowed to make ? changes to the current solution rather than 1 at each step of the {transformation procedure}. There is always a valid sequence of matchings transforming M to M\u27 if ? is sufficiently large, and naturally we would like to minimize ?. We first devise an optimal transformation procedure for unweighted matching with ? = 3, and then extend it to weighted matchings to achieve asymptotically optimal guarantees. The running time of these procedures is linear. We further demonstrate the applicability of this generalized problem to dynamic graph matchings. In this area, the number of changes to the maintained matching per update step (the recourse bound) is an important quality measure. Nevertheless, the worst-case recourse bounds of almost all known dynamic matching algorithms are prohibitively large, much larger than the corresponding update times. We fill in this gap via a surprisingly simple black-box reduction: Any dynamic algorithm for maintaining a ?-approximate maximum cardinality matching with update time T, for any ? ? 1, T and ? > 0, can be transformed into an algorithm for maintaining a (?(1 +?))-approximate maximum cardinality matching with update time T + O(1/?) and worst-case recourse bound O(1/?). This result generalizes for approximate maximum weight matching, where the update time and worst-case recourse bound grow from T + O(1/?) and O(1/?) to T + O(?/?) and O(?/?), respectively; ? is the graph aspect-ratio. We complement this positive result by showing that, for ? = 1+?, the worst-case recourse bound of any algorithm produced by our reduction is optimal. As a corollary, several key dynamic approximate matching algorithms - with poor worst-case recourse bounds - are strengthened to achieve near-optimal worst-case recourse bounds with no loss in update time

    The Provable Virtue of Laziness in Motion Planning

    Full text link
    The Lazy Shortest Path (LazySP) class consists of motion-planning algorithms that only evaluate edges along shortest paths between the source and target. These algorithms were designed to minimize the number of edge evaluations in settings where edge evaluation dominates the running time of the algorithm; but how close to optimal are LazySP algorithms in terms of this objective? Our main result is an analytical upper bound, in a probabilistic model, on the number of edge evaluations required by LazySP algorithms; a matching lower bound shows that these algorithms are asymptotically optimal in the worst case

    Solving String Problems on Graphs Using the Labeled Direct Product

    Get PDF
    Suffix trees are an important data structure at the core of optimal solutions to many fundamental string problems, such as exact pattern matching, longest common substring, matching statistics, and longest repeated substring. Recent lines of research focused on extending some of these problems to vertex-labeled graphs, either by using efficient ad-hoc approaches which do not generalize to all input graphs, or by indexing difficult graphs and having worst-case exponential complexities. In the absence of an ubiquitous and polynomial tool like the suffix tree for labeled graphs, we introduce the labeled direct product of two graphs as a general tool for obtaining optimal algorithms in the worst case: we obtain conceptually simpler algorithms for the quadratic problems of string matching (SMLG) and longest common substring (LCSP) in labeled graphs. Our algorithms run in time linear in the size of the labeled product graph, which may be smaller than quadratic for some inputs, and their run-time is predictable, because the size of the labeled direct product graph can be precomputed efficiently. We also solve LCSP on graphs containing cycles, which was left as an open problem by Shimohira et al. in 2011. To show the power of the labeled product graph, we also apply it to solve the matching statistics (MSP) and the longest repeated string (LRSP) problems in labeled graphs. Moreover, we show that our (worst-case quadratic) algorithms are also optimal, conditioned on the Orthogonal Vectors Hypothesis. Finally, we complete the complexity picture around LRSP by studying it on undirected graphs.Peer reviewe
    • …
    corecore