2,037 research outputs found

    Communicating over Filter-and-Forward Relay Networks with Channel Output Feedback

    Full text link
    Relay networks aid in increasing the rate of communication from source to destination. However, the capacity of even a three-terminal relay channel is an open problem. In this work, we propose a new lower bound for the capacity of the three-terminal relay channel with destination-to-source feedback in the presence of correlated noise. Our lower bound improves on the existing bounds in the literature. We then extend our lower bound to general relay network configurations using an arbitrary number of filter-and-forward relay nodes. Such network configurations are common in many multi-hop communication systems where the intermediate nodes can only perform minimal processing due to limited computational power. Simulation results show that significant improvements in the achievable rate can be obtained through our approach. We next derive a coding strategy (optimized using post processed signal-to-noise ratio as a criterion) for the three-terminal relay channel with noisy channel output feedback for two transmissions. This coding scheme can be used in conjunction with open-loop codes for applications like automatic repeat request (ARQ) or hybrid-ARQ.Comment: 15 pages, 8 figures, to appear in IEEE Transactions on Signal Processin

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Stabilization of Linear Systems Over Gaussian Networks

    Full text link
    The problem of remotely stabilizing a noisy linear time invariant plant over a Gaussian relay network is addressed. The network is comprised of a sensor node, a group of relay nodes and a remote controller. The sensor and the relay nodes operate subject to an average transmit power constraint and they can cooperate to communicate the observations of the plant's state to the remote controller. The communication links between all nodes are modeled as Gaussian channels. Necessary as well as sufficient conditions for mean-square stabilization over various network topologies are derived. The sufficient conditions are in general obtained using delay-free linear policies and the necessary conditions are obtained using information theoretic tools. Different settings where linear policies are optimal, asymptotically optimal (in certain parameters of the system) and suboptimal have been identified. For the case with noisy multi-dimensional sources controlled over scalar channels, it is shown that linear time varying policies lead to minimum capacity requirements, meeting the fundamental lower bound. For the case with noiseless sources and parallel channels, non-linear policies which meet the lower bound have been identified

    Capacity Theorems for the Fading Interference Channel with a Relay and Feedback Links

    Full text link
    Handling interference is one of the main challenges in the design of wireless networks. One of the key approaches to interference management is node cooperation, which can be classified into two main types: relaying and feedback. In this work we consider simultaneous application of both cooperation types in the presence of interference. We obtain exact characterization of the capacity regions for Rayleigh fading and phase fading interference channels with a relay and with feedback links, in the strong and very strong interference regimes. Four feedback configurations are considered: (1) feedback from both receivers to the relay, (2) feedback from each receiver to the relay and to one of the transmitters (either corresponding or opposite), (3) feedback from one of the receivers to the relay, (4) feedback from one of the receivers to the relay and to one of the transmitters. Our results show that there is a strong motivation for incorporating relaying and feedback into wireless networks.Comment: Accepted to the IEEE Transactions on Information Theor

    Delay Optimal Secrecy in Two-Relay Network

    Full text link
    We consider a two-relay network in which a source aims to communicate a confidential message to a destination while keeping the message secret from the relay nodes. In the first hop, the channels from the source to the relays are assumed to be block-fading and the channel states change arbitrarily -possibly non-stationary and non-ergodic- across blocks. When the relay feedback on the states of the source-to-relay channels is available on the source with no delay, we provide an encoding strategy to achieve the optimal delay. We next consider the case in which there is one-block delayed relay feedback on the states of the source-to-relay channels. We show that for a set of channel state sequences, the optimal delay with one-block delayed feedback differs from the optimal delay with no-delayed feedback at most one block
    • …
    corecore